K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :

\(\left(a^2+2\right)\left[1+\frac{\left(b+c\right)^2}{2}\right]\ge\left(a+b+c\right)^2\)

\(\Rightarrow\frac{1}{a^2+2}\le\frac{1+\frac{\left(b+c\right)^2}{2}}{\left(a+b+c\right)^2}\)

Tương tự : \(\frac{1}{b^2+2}\le\frac{1+\frac{\left(a+c\right)^2}{2}}{\left(a+b+c\right)^2}\) ; \(\frac{1}{c^2+2}\le\frac{1+\frac{\left(a+b\right)^2}{2}}{\left(a+b+c\right)^2}\)

Cộng vế theo vế,ta có :

\(\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le\frac{3+\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2}{2}}{\left(a+b+c\right)^2}\)

\(=\frac{3+a^2+b^2+c^2+ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu "=" xảy ra khi a = b = c = 1

28 tháng 4 2020

Đặt \(P=\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\)

Thực hiện phép biến đổi theo biểu thức P ta được

\(Q=3-2P=\frac{a^2}{a^2+2}+\frac{b^2}{a^2+2}+\frac{c^2}{c^2+2}\)

 Theo BĐT Cauchy-Schwarz ta có:

\(Q\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=1\)

\(\Rightarrow P\le1\). Dấu "=" xảy ra <=> a=b=c=1

11 tháng 5 2018

Áp dụng BĐT Bunhiacopxki, ta có: 

\(\left(a+b+c\right)\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\)

Mà \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+1}=1\)

\(\Rightarrow\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\left(a+b+c\right)\ge1\) 

\(\Rightarrow\frac{a}{\left(ab+b+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)

11 tháng 5 2018

\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)

ta có  \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)

đặt \(H=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\)

áp dụng bất đẳng thức bunhiacopxki  ta có 

\(H\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\right)^2=1\)

\(\Rightarrow H\ge\frac{1}{a+b+c}\)

hay  \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)

3 tháng 11 2019

\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)

Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bdt Cauchy ta có :

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)--\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=3\)

Chúc bạn học tốt !!!

12 tháng 10 2019

\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)

Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng BĐT Cauchy ta có :

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :

\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=3\)

Chúc bạn học tốt !!!

6 tháng 4 2018

Cho mk k nhé!

4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13

1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)

24 tháng 4 2020

Bài 1 : 

Bât đẳng thức cần chứng minh tương đương với :

( xy+yz + zx )(9 + x2y2 +z2y2 + x2z2 ) \(\ge\)36xyz 

Áp dụng bất đẳng thức Côsi ta có : 

xy+ yz + zx \(\ge3\sqrt[3]{x^2y^2z^2}\)           ( 1) 

Và 9 + x2y2 + z2y2 + x2z2 \(\ge12\sqrt[12]{x^4y^4z^4}\)

hay 9+ x2y2 + z2y2+ x2z2 \(\ge12\sqrt[3]{xyz}\)                (2) 

Do các vế đều dương ,từ (1) và (2) suy ra :

( xy + yz +zx )( 9+ x2y2 + z2y2 + x2z2 ) \(\ge36xyz\left(đpcm\right)\)

Dấu đẳng thức xảy ra khi và chỉ khi x = y  =z = 1 

Bài 2: 

\(\hept{\begin{cases}a;b;c>0\\ab+bc+ca=1\end{cases}}\)

Có : \(\hept{\begin{cases}\sqrt{1+a^2}\ge\sqrt{2a}\Rightarrow\frac{a}{\sqrt{1+a^2}}\le\frac{\sqrt{3}}{2}a\\\sqrt{1+b^2}\ge\sqrt{2b}\Rightarrow\frac{b}{\sqrt{1+b^2}}\le\frac{\sqrt{3}}{2}b\\\sqrt{1+c^2}\ge\sqrt{2c}\Rightarrow\frac{c}{\sqrt{1+c^2}}\le\frac{\sqrt{3}}{2}c\end{cases}}\)

=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{\sqrt{3}}{2}\left(a+b+c\right)\le\frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{2}\left(ab+bc+ca\right)\)

=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{3}{2}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi a =b =c = \(\frac{1}{\sqrt{3}}\)

26 tháng 4 2020

a2+b2+c2=1-2ab-2ac-2bc

dat ab+bc+ca =x roi thay vao

26 tháng 4 2020

Từ giả thiết ta có:

\(\left(a+b+c\right)^3=a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)

\(\frac{3}{ab+bc+ac}=\frac{3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)}{ab+bc+c}=\frac{3\left(a^2+b^2+c^2\right)}{ab+bc+ca}+6\)

\(\frac{2}{a^2+b^2+c^2}=\frac{2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{a^2+b^2+c^2}=2+\frac{4\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)

Áp dụng bđt Cosi cho 2 số dương ta có:

\(\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}\ge6+2+2\sqrt{\frac{3\left(a^2+b^2+c^2\right)4\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}}=8+2\sqrt{12}\)

\(>8+2\sqrt{9}=14\)

6 tháng 3 2020

Áp dụng BĐT Cosi ta có \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\ge2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

Tương tự \(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc}\ge1\) \(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ca}\ge1\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được

\(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\right)\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{4b}+\frac{b}{4a}+\frac{b}{4c}+\frac{c}{4b}+\frac{a}{4c}+\frac{c}{4a}\right)\right)\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+c}{b}-\frac{b+c}{a}-\frac{c+a}{b}\right)\ge\frac{3}{4}\)(do \(a+b+c=1\))

\(\Leftrightarrow\frac{3}{4}\ge\frac{3}{4}\) luôn đúng. Từ đó suy ba BĐT được chứng minh. Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

16 tháng 10 2019

Áp dụng BĐT Cauchy dạng phân thức :
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{9}{ab+bc+ac}\)

\(\Rightarrow VT\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ac}\)

\(\Leftrightarrow VT\ge\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{7}{ab+ac+bc}\)

Theo hệ quả của bất đẳng thức Cauchy 

\(\Rightarrow ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)

\(\Rightarrow\frac{7}{ab+bc+ac}\ge21\left(1\right)\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}\)

\(\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=9\)  (2)

Từ (1) và (2) 

\(\Rightarrow VT\ge21+9=30\left(đpcm\right)\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

15 tháng 1 2020

Trl 

Bn hoàng việt nhật lm đúng r nhé :3

hok tốt