\(\dfrac{x}{a}+\dfrac{y}{b}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Tham khảo lời giải tại đây:

Câu hỏi của MInemy Nguyễn - Toán lớp 8 | Học trực tuyến

5 tháng 12 2018

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bxz+cxy=0\left(1\right)\)

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=1=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xyc+ayz+xbz}{abc}\right)=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)(đpcm)

5 tháng 12 2018

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\Leftrightarrow ayz+bxz+cxy=0\)

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2-2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ac}\right)\)

\(=\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2-2\left(\dfrac{cxy+ayz+bzx}{abc}\right)\)\(=1-0=1\left(dpcm\right)\)

trong chuyên đề có bạn nhé

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)