K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

Cauchy ở mẫu \(a^2+bc\ge2a\sqrt{bc}\)

Vậy vế trái \(\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)

Và lượng trên tử bé hơn bằng \(ab+bc+ca\)

18 tháng 12 2016

Mình đánh nhầm, dòng cuối cùng là \(a+b+c\)

10 tháng 2 2016

Mình làm xin bạn xem kĩ :

giả sử đã cm xong ta có : 

thay a+b2 +c2 = 1 vào vế trái bđt trên, ta có :

\(1+\frac{c^2}{a^2+b^2}+1+\frac{a^2}{b^2+c^2}+1+\frac{b^2}{a^2+c^2}\le\left(vế\right)phải\) ( khi thế vào có các tử bằng mẫu )

<=> \(\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\) (1)

Vậy ta chỉ cần cm điều trên đúng thì xong 

Bạn để ý với a,b,c là số dương thì :

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ac\)

=> \(\frac{1}{a^2+b^2}\le\frac{1}{2ab}\)

=> \(\frac{c^2}{a^2+b^2}\le\frac{c^2}{2ab}\)

Tương tự với các bđt còn lại. Sau đó cộng các vế lại ta sẽ được bđt (1) => (1) đúng => đpcm

 

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

NV
19 tháng 9 2019

\(P=a+ab+2abc=a+\frac{1}{2}a.4b\left(\frac{1}{2}+c\right)\le a+\frac{1}{2}a.\left(b+\frac{1}{2}+c\right)^2\)

\(P\le a+\frac{1}{2}a\left(3-a+\frac{1}{2}\right)^2=a+\frac{1}{2}a\left(\frac{7}{2}-a\right)^2\)

\(P\le\frac{1}{2}a^3-\frac{7}{2}a^2+\frac{57}{8}a\)

\(P\le\frac{1}{8}\left(4a^3-28a^2+57a-36\right)+\frac{9}{2}\)

\(P\le\frac{1}{8}\left(2a-3\right)^2\left(a-4\right)+\frac{9}{2}\)

Do \(a+b+c=3\Rightarrow a< 3\Rightarrow a-4< 0\)

\(\Rightarrow\frac{1}{8}\left(2a-3\right)^2\left(a-4\right)< 0\Rightarrow P\le\frac{9}{2}\)

Dấu "=" xảy ra khi \(a=\frac{3}{2}\) ; \(\left\{{}\begin{matrix}\frac{3}{2}+b+c=3\\b=c+\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow b=...;c=...\)

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện