\(a+b+c=1\)

\(a^3+b^3+c^3=1\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

đến đây ez tự làm nốt nhé, ko ra ib mk

6 tháng 9 2019

Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc

Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)

Ta có \(LHS=a^3.a+b^3.b+c^3.c\) 

\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)

\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)

\(=a^3+b^3+c^3=RHS\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 9 2019

Bài 2:

\(BĐT\Leftrightarrow\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Đến đây bớt 3/2 ở mỗi vế rồi dùng sos xem sao? Giờ phải ăn cơm đi học rồi, chiều về làm, ko được sẽ nghĩ cách khác.

18 tháng 11 2019

\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}\ge1\)the problem -AoPS mình làm bên này rồi nha! (Câu trả lời của SBM)  

18 tháng 12 2017

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{1}{b+1+bc}+\dfrac{1}{c+1+ac}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{abc+ac+abc.c}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{1+ac+c}+\dfrac{1}{ac+c+c}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac+1+c}{ac+c+1}=1\) (đpcm)

12 tháng 4 2018

Áp dụng BĐT AM-GM ta có:

\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}\)

\(=\left(a+1\right)-\frac{ab+b}{2}\). Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\ge3+\left(a+b+c\right)-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge3+\left(a+b+c\right)-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" <=> \(a=b=c=1\)

12 tháng 4 2018

\(Áp dụng BĐT AM-GM ta có: \(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}\) \(=\left(a+1\right)-\frac{ab+b}{2}\). Tương tự cho 2 BĐT còn lại rồi cộng theo vế: \(VT\ge3+\left(a+b+c\right)-\frac{ab+bc+ca+a+b+c}{2}\) \(\ge3+\left(a+b+c\right)-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\) Dấu "=" <=> \(a=b=c=1\)\)

31 tháng 12 2016

Bài 1: 4

Bài 2: 114 (hình như vậy) 

(ko biết trình bày ah)

31 tháng 12 2016

Bạn cố nhớ cách trình bày giúp mk dc k

8 tháng 6 2018

Đặt P=\(4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+5\left(a^2+b^2+c^2\right)\)

\(=\left(5a^2+\frac{4}{a}\right)+\left(5b^2+\frac{4}{b}\right)+\left(5c^2+\frac{4}{c}\right)\)

Lại có:\(a^3+b^3+c^3=3\)và \(a,b,c>0\)\(\Rightarrow0< a,b,c\le\sqrt[3]{3}\)

Ta chứng minh cho:

\(5x^2+\frac{4}{x}\ge2x^3+7\)với  \(0< x\le\sqrt[3]{3}\)

\(\Leftrightarrow5x^2+\frac{4}{x}-2x^3-7\ge0\)

\(\Leftrightarrow5x^3+4-2x^4-7x\ge0\)

\(\Leftrightarrow2x^4-5x^3+7x-4\le0\)

\(\Leftrightarrow\left(2x^2-x-4\right)\left(x-1\right)^2\le0\)

Nhận thấy \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\2x^2-x-4< 0\forall0< x\le\sqrt[3]{3}\end{cases}}\)\(\Rightarrow5x^2+\frac{4}{x}\ge2x^3+7\)\(\left(1\right)\)

Áp dụng (1).Ta có:

\(P\ge2a^3+7+2b^3+7+2c^3+7\) với \(0< a,b,c\le\sqrt[3]{3}\)

\(\Leftrightarrow P\ge2\left(a^2+b^2+c^2\right)+21\)

\(\Leftrightarrow P\ge27\) Do:\(a^3+b^3+c^3=3\)\(\left(đpcm\right)\)

Dấu = xảy ra khi:

\(a=b=c=1\)

6 tháng 4 2017

1 bai thoi cung dc