K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2020

P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)

P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)

22 tháng 7 2020

\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)

23 tháng 12 2017

Ta có : \(p=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\)

Áp dụng bất đẳng thức AM - GM ta có :

\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4ab}}=\frac{1}{a}\)

\(\frac{ac}{b^2\left(a+c\right)}+\frac{a+c}{4ac}\ge4\sqrt{\frac{ac}{b^2\left(a+c\right)}.\frac{a+c}{4ac}}=\frac{1}{b}\)

\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}.\frac{a+b}{4ab}}=\frac{1}{c}\)

Cộng vế với vế ta được \(p+\frac{1}{4c}+\frac{1}{4a}+\frac{1}{4b}+\frac{1}{4a}+\frac{1}{4c}+\frac{1}{4b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow p+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow p\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{2a.2b.2c}}=\frac{3}{\sqrt[3]{8abc}}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

19 tháng 8 2020

Xét: \(\frac{bc}{a^2b+ca^2}=\frac{bc}{a\cdot abc\cdot\frac{1}{c}+a\cdot abc\cdot\frac{1}{b}}=\frac{b^2c^2}{ab+ca}\)(*)

Tương tự với (*) ta có: \(\hept{\begin{cases}\frac{ca}{b^2c+ab^2}=\frac{c^2a^2}{ab+bc}\\\frac{ab}{c^2a+bc^2}=\frac{a^2b^2}{ca+bc}\end{cases}}\)

\(\Rightarrow\Sigma_{cyc}\frac{bc}{a^2b+ca^2}=\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\)

Ta thấy\(\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\) có dạng: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\left(a+b+c\right)\)

Bước cuối Cô-si ba số và kết hợp điều kiện abc=1 là xong

21 tháng 1 2021

Không có mô tả.https://olm.vn/thanhvien/phuongeieu chẳng hiều gì về toán học à bạn ?

20 tháng 1 2021

Cosi 2 số : \(ab+\frac{1}{a}\ge2ab\frac{1}{a}=2b\)

\(bc+\frac{1}{b}\ge2bc\frac{1}{b}=2c\)

\(ca+\frac{1}{c}\ge2ca\frac{1}{c}=2a\)

Cộng vế với vế ta được : \(2\left(ab+\frac{1}{a}+bc+\frac{1}{b}+ca+\frac{1}{c}\right)\ge2\left(a+b+c\right)\)

Dấu ''='' xảy ra <=> a = b = c 

*Gỉa sử : a = b = c = 1 ta được : \(A=\frac{1}{1}+\frac{1}{1}+\frac{1}{1}=1\)

1 tháng 5 2017

bài này ko khác gì câu 921427 nhé bạn, có điều bạn tìm cách tách a + 3b + 2c = (a + b) + (b + c) + (b + c)

Thêm nữa, áp dụng BĐT   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)  với a, b, c > 0

Đẳng thức xảy ra khi và chỉ khi a = b = c.

20 tháng 2 2020

EZ!!!Sau khi sử dụng 1 số bđt đơn giản, ta sẽ được:

\(\text{Σ}_{cyc}\frac{ab}{a+3b+2c}\le\frac{1}{9}\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=K\)

\(P\le K=\frac{1}{9}\left[\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{a+b+c}{2}\right]\)

\(=\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2

9 tháng 11 2023

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

15 tháng 5 2018

Ta có: \(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\) 

\(P=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}+\frac{bc}{\sqrt{bc+\left(a+b+c\right)a}}+\frac{ca}{\sqrt{ca+\left(a+b+c\right)b}}\) 

\(P=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(b+a\right)\left(c+a\right)}}+\frac{ca}{\sqrt{\left(c+b\right)\left(a+b\right)}}\) 

\(P=\sqrt{\frac{ab}{\left(a+c\right)}.\frac{ab}{\left(b+c\right)}}+\sqrt{\frac{bc}{b+a}.\frac{bc}{c+a}}+\sqrt{\frac{ca}{c+b}.\frac{ca}{a+b}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{ca}{c+b}+\frac{ca}{a+b}\right)=\frac{\left(a+b+c\right)}{2}=1\)

Vậy Max P=1 khi \(a=b=c=\frac{2}{3}\)

15 tháng 5 2018

\(P=\Sigma\dfrac{ab}{\sqrt{ab+2c}}=\Sigma\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\Sigma\dfrac{\sqrt{ab}.\sqrt{ab}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}.\Sigma\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\) \(=\dfrac{1}{2}.\left(a+b+c\right)=1\)