\(4a^2+b^2+c^2\le4\). Chứng minh: \(ab+bc+ca\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

Đây nhé @Liana

\(2a^2+\left(2-\sqrt{3}\right)b^2+2a^2+\left(2-\sqrt{3}\right)c^2+\left(\sqrt{3}-1\right)b^2+\left(\sqrt{3}-1\right)c^2\)

\(\ge2\sqrt{4-2\sqrt{3}}ab+2\sqrt{4-2\sqrt{3}}ac+2\left(\sqrt{3}-1\right)bc\)

\(\Leftrightarrow4a^2+b^2+c^2\ge2\left(\sqrt{3}-1\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow4\ge2\left(\sqrt{3}-1\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow1+\sqrt{3}\ge ab+bc+ca\)

\(\Rightarrow dpcm\)

20 tháng 8 2018

eoeooaaa

27 tháng 11 2020

Ta có:\(ab^2+bc^2+ca^2-4abc=0\Leftrightarrow\frac{b}{c}+\frac{c}{a}+\frac{a}{b}=4\)

Áp dụng BĐT AM-GM ta có:

\(\frac{b}{c}+\frac{c}{a}\ge2\sqrt{\frac{b}{a}};\frac{c}{a}+\frac{a}{b}\ge2\sqrt{\frac{c}{b}};\frac{a}{b}+\frac{b}{c}\ge2\sqrt{\frac{a}{c}}\)

Cộng theo vế các BĐT trên ta được : \(\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{b}}+\sqrt{\frac{a}{c}}\le4\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{b}{c}=\frac{c}{a}=\frac{a}{b}=\frac{4}{3}\)( vô lý)

Vậy đẳng thức không thể xảy ra.

20 tháng 4 2018

de sai

27 tháng 8 2018

Trả lời:

đề sai

chúc bạn học tốt

22 tháng 4 2020

\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)

Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)