Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a ; b ; c > 0 ; ab + bc + ac = 1
Tìm max : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}\)
ĐK : a;b;c > 0
Ta có : \(ab+bc+ac=1\) \(\Leftrightarrow c\left(a+b\right)=1-ab\Leftrightarrow c=\dfrac{1-ab}{a+b}\)
Khi đó : \(c^2+1=\left(\dfrac{1-ab}{a+b}\right)^2+1\) \(=\dfrac{\left(ab\right)^2+1+a^2+b^2}{\left(a+b\right)^2}=\dfrac{\left(a^2+1\right)\left(b^2+1\right)}{\left(a+b\right)^2}\)
\(\Rightarrow\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\)
Ta có : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}=\dfrac{ab^2+a^2b+a+b}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(ab+1\right)\left(a+b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
Suy ra : \(A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)\left(ab+1-a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(a+b\right)\left(1-a\right)\left(1-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
AD BĐT Cauchy ta được : \(\left(a+b\right)\left[\left(1-a\right)\left(1-b\right)\right]\le\dfrac{\left[a+b+\left(1-a\right)\left(1-b\right)\right]^2}{4}=\dfrac{\left(1+ab\right)^2}{4}\)
\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(ab+1\right)^2\) ( theo BCS )
Suy ra : \(A\le\dfrac{1}{4}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=2(\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2})+\frac{1}{2(ab+bc+ac)}\\
\geq 2.\frac{9}{2(ab+bc+ac)+a^2+b^2+c^2}+\frac{1}{2(ab+bc+ac)}\\
=\frac{18}{(a+b+c)^2}+\frac{1}{2(ab+bc+ac)}\\
=18+\frac{1}{2(ab+bc+ac)}\)
Áp dụng BĐT AM-GM:
$2(ab+bc+ac)\leq 2.\frac{(a+b+c)^2}{3}=\frac{2}{3}$
$\Rightarrow \frac{1}{2(ab+bc+ac)}\geq \frac{3}{2}$
$\Rightarrow P\geq 18+\frac{3}{2}=\frac{39}{2}$
Vậậy $P_{\min}=\frac{39}{2}$ khi $a=b=c=\frac{1}{3}$
Với \(ab+bc+ca=1\) và a,b,c>0 ta có:
\(\left\{{}\begin{matrix}\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(c+a\right)}\\\sqrt{b^2+1}=\sqrt{\left(b+c\right)\left(a+b\right)}\\\sqrt{c^2+1}=\sqrt{\left(c+a\right)\left(b+c\right)}\end{matrix}\right.\). Do đó:
\(\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}=a+b\)
Tương tự: \(\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}=b+c\) ; \(\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}=c+a\)
\(\Rightarrow P=2\left(a+b+c\right)\)
\(\Rightarrow P^2=4\left(a+b+c\right)^2\ge4.3\left(ab+bc+ca\right)=4.3.1=12\)
\(\Rightarrow P\ge2\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)
Vậy \(MinP=2\sqrt{3}\)
\(P=\dfrac{9}{ab+bc+ca}+\dfrac{2}{a^2+b^2+c^2}\)
\(=2\left[\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\right]+\dfrac{5}{ab+bc+ca}\)
\(\ge2.\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{5}{ab+bc+ca}\)
\(=\dfrac{18}{1}+\dfrac{5}{ab+bc+ca}\ge18+5.\dfrac{3}{\left(a+b+c\right)^2}=18+15=33\)
Đẳng thức xảy ra khi a=b=c=1/3.
Vậy GTNN của P là 33.
áp dụng BDT AM-GM
\(=>a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\)
\(=>1\ge3\sqrt[3]{\left(abc\right)^2}=>1\ge27\left(abc\right)^2\)\(=>27\left(abc\right)^2\le1=>3\left(abc\right)^2\le\dfrac{1}{9}=>\left(abc\right)^2\le\dfrac{1}{27}=>abc\le\dfrac{1}{3\sqrt{3}}\)
\(=>\dfrac{8}{9abc}\ge\dfrac{8}{9.\dfrac{1}{3\sqrt{3}}}=\dfrac{8\sqrt{3}}{3}\)
\(S=a+b+c+\dfrac{1}{abc}=a+b+c+\dfrac{1}{9abc}+\dfrac{8}{9abc}\)
\(=>a+b+c+\dfrac{1}{9abc}\ge4\sqrt[4]{\dfrac{1}{9}}=\dfrac{4}{\sqrt{3}}\)
\(=>S\ge\dfrac{4}{\sqrt{3}}+\dfrac{8}{\sqrt{3}}=4\sqrt{3}\)
dấu"=" xyar ra<=>a=b=c=\(\dfrac{1}{\sqrt{3}}\)
Các bn mà cop thì nhớ giải thích giúp mik đoạn \(a^2+b^2+c^2\ge3\sqrt[3]{abc}\) với
a,b,c >=0 à bạn