Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
<=>a2c+b2a+c2b=b2c+c2a+a2b
<=>(a2c-a2b)+(b2a-c2a)+(c2b-b2c)=0
<=>a2.(c-b)-a.(c2-b2)+bc.(c-b)=0
<=>a2.(c-b)-a.(c-b)(c+b)+bc.(c-b)=0
<=>(c-b)(a2-ac-ab+bc)=0
<=>(c-b)(a-c)(a-b)=0
<=>a=b=c
Mà a+b+c=3
=>a=b=c=1
Đúng đó bạn à, câu này trong sách bổ trợ và nâng cao lớp 8, bạn có thể tìm đọc nhé. Mình học lớp 8 mà.
Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)(dãy tỉ số bằng nhau)
=> a = b = c
Khi đó \(P=\left(1+\frac{2a}{b}\right)\left(1+\frac{2b}{c}\right)\left(1+\frac{2c}{a}\right)=\left(1+\frac{2b}{b}\right)\left(1+\frac{2c}{c}\right)\left(1+\frac{2a}{a}\right)\)
= (1 + 2)(1 + 2)(1 + 2) = 3.3.3 = 27
Vậy P = 27
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) ( do a + b + c khác 0 )
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow a=b=c\)
Thế vào P ta được :
\(P=\left(1+\frac{2b}{b}\right)\left(1+\frac{2c}{c}\right)\left(1+\frac{2a}{a}\right)=\left(1+2\right)\left(1+2\right)\left(1+2\right)=27\)
ta có\(\left|x+y-5\right|\ge0\)
\(\left(y-2\right)^8\ge0\)
để biểu thức = 0 thì 2 biểu thức trên =0
\(tacó\)\(x+y=5\)
\(y-2=0\Rightarrow y=2\)
\(x+2=5\Rightarrow x=3\)
x=2;y=3
Ta có
\(\frac{a+b+c}{2}=\frac{a+b-2}{c}=\frac{b+c+1}{a}=\frac{c+a+1}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Ta có
\(\frac{a+b+c}{2}=\frac{a+b-2}{c}=\frac{c+2}{2-c}=2\)
\(\Rightarrow c=\frac{2}{3}\)
\(\frac{a+b+c}{2}=\frac{c+a+1}{b}=\frac{b-1}{2-b}=2\)
\(\Rightarrow b=\frac{5}{3}\)
\(\frac{a+b+c}{2}=\frac{b+c+1}{a}=\frac{a-1}{2-a}=2\)
\(\Rightarrow a=\frac{5}{3}\)
\(a,b,c\ne o\)
VA \(a+b+c\ne o\)
LÀ HAI ĐIỀU KIỆN HOÀN TOÀN KHÁC NHAU VẬY MÀ ALIBABA XEM NHƯ LÀ MỘT.
Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))
1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)
2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)
Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)
Áp dụng thủ thuật 1-2-3 và tính chất a + b = a . b , ta có :
1 + 1 = 1 . 1 ( loại ) , 2 + 2 = 2 . 2 ( giữ ) , 3 + 3 = 3 . 3 ( loại )
Vậy với \(a,b,c\ne0;\frac{ab}{a+b}=\frac{bc}{b+c}+\frac{ac}{a+c}\) , => Đẳng thức xảy ra khi x + y = x . y tức là a = b = c = 2 .
\(\left(1+\frac{a}{2b}\right)\left(1+\frac{b}{3c}\right)\left(1+\frac{c}{4a}\right)\)
\(\Rightarrow\left(1+\frac{1}{2\cdot1}\right)\left(1+\frac{1}{3\cdot1}\right)\left(1+\frac{1}{4\cdot1}\right)\)
\(=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\)
\(=\frac{5}{2}\)( vì \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}=\frac{3\cdot4\cdot5}{2\cdot3\cdot4}=\frac{5}{2}\))
Đặt: \(\frac{a}{2013}=\frac{b}{2012}=\frac{c}{2011}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2012k\\c=2011k\end{cases}}\)
\(P=\frac{\left(a-c\right)^4}{\left(a-b\right)^2\left(b-c\right)^2}=\frac{\left(2013k-2011k\right)^4}{\left(2013k-2012k\right)^2\left(2012k-2011k\right)^2}=\frac{16k^4}{k^4}=16\)
ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)
\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1)
=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)
a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] =>
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2)
Thực hiện tương tự ta cũng có
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3)
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4)
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.
- viết lại cái đề
* Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)
* Vậy \(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\left(1\right)\)
\(\frac{b}{3c}=\frac{1}{3}\Rightarrow3b=3c\Rightarrow b=c\left(2\right)\)
\(\frac{c}{3d}=\frac{1}{3}\Rightarrow3c=3d\Rightarrow c=d\left(3\right)\)
\(\frac{d}{3a}=\frac{1}{3}\Rightarrow3d=3a\Rightarrow d=a\left(4\right)\)
từ (1),(2),(3),(4) ta có:
a=b,b=c,c=d,d=a
=> a=b=c=d
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\Leftrightarrow a=b=c\)
\(A=\frac{a}{b+c}+\frac{a+b}{c}=\frac{5}{2}\)