Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(=\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
=> \(\frac{bz-cy}{a}=0\)=> bz - cy = 0 => bz = cy hay \(\frac{z}{c}=\frac{y}{b}\left(1\right)\)
=> \(\frac{cx-az}{b}=0\)=> cx - az = 0 => cx = az hay \(\frac{x}{a}=\frac{z}{c}\)(2)
Từ (1) và (2) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
giả sử
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
ta có:\(\text{}\text{}\text{}\text{}\text{}\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cyx}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cyx+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\)
\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{z}{c}=\frac{x}{a}\left(2\right)\)
\(\frac{ay-bx}{c}=0\Rightarrow ay=bx\Rightarrow\frac{x}{a}=\frac{y}{b}\left(3\right)\)
từ (1),(2),(3) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
=> điều giả sử đúng => đpcm
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\left(1\right)\)
\(\frac{cx-az}{y}=\frac{cak-cak}{y}=0\left(2\right)\)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\left(3\right)\)
Từ (1),(2),(3) => đpcm