\(\frac{ab}{c\left(c+a\right)}\)+ 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2015

Tạ Quang Duy

học cấp 1 thì có ! chắc là lớp 2

vì lớp 7 ở cấp 2 = lớp 2 ở cấp 1

10 tháng 9 2015

Công Chúa Giá Băng copy hay thật

10 tháng 9 2015

1455hinh-anh-avata-mat-cuoi-bo-tay1.jpg

 

4 tháng 2 2021

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

4 tháng 2 2021

OMG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

29 tháng 5 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\left(a+b+c\right)\left(a+a^2b+\frac{1}{c}\right)\ge\left(ab+a+1\right)^2\)

Mà \(\left(a+b+c\right)\left(a+a^2b+\frac{1}{c}\right)=\left(a+b+c\right)\left(a+a^2b+ab\right)\)

\(\Rightarrow\frac{a}{\left(ab+a+1\right)^2}\ge\frac{a}{\left(a+b+c\right)\left(a+a^2b+ab\right)}=\frac{1}{\left(a+b+c\right)\left(1+ab+b\right)}\)

Tương tự rồi cộng theo vế 3 BĐT ta có:

\(VT\ge\frac{1}{a+b+c}\left(Σ\frac{1}{1+ab+b}\right)=\frac{1}{a+b+c}\left(abc=1\right)\)

Đẳng thức xảy ra khi \(a=b=c=1\)

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

3 tháng 1 2018

Biến đổi tương đương: Để ý rằng : \(a^2-\frac{a\left(b^2+c^2\right)}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{b+c}\)

cứ như vậy, nhóm lại . sẽ có một biểu thức: \(ab\left(a-b\right)\left[\frac{1}{b+c}-\frac{1}{a+c}\right]=\frac{ab\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}\ge0\)

Mấy cái còn lại cũng vậy.

3 tháng 1 2022

TL :

Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).

HT

3 tháng 1 2022

Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái 

\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?