K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3

=(a2b+a2c-a3)+(b2c+ab2-b3)+(c2a+c2b-c3)

=a2(b+c-a)+b2(a+c-b)+c2(a+b-c)

áp dụng bất đẳng thức tam giác vào tam giác có các số đo=a;b;c ta có:

a+b>c

=>a+b-c>0

b+c>a

=>b+c-a>0

c+a>b

=>c+a-b>0

=>a2(b+c-a)+b2(a+c-b)+c2(a+b-c)>0

=>a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3>0

=>đpcm

8 tháng 2 2016

a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3

=(a2b+a2c-a3)+(b2c+ab2-b3)+(c2a+c2b-c3)

=a2(b+c-a)+b2(a+c-b)+c2(a+b-c)

áp dụng bất đẳng thức tam giác vào tam giác có các số đo=a;b;c ta có:

a+b>c

=>a+b-c>0

b+c>a

=>b+c-a>0

c+a>b

=>c+a-b>0

=>a2(b+c-a)+b2(a+c-b)+c2(a+b-c)>0

=>a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3>0

=>đpcm

17 tháng 6 2016

undefined

17 tháng 6 2016

VT=2a2b2+2a2c2+2b2c2-a4-b4-c4

=a2b2+a2c2+b2c2+a2.(b2-a2)+b2.(c2-b2)+c2.(a2-c2)

=a2b2+a2c2+b2c2+a2.(b+a)(b-a)+b2.(c+b)(c-b)+c2.(a+c)(a-c)

Ta lại có : a+b>c=>a-c>-b

                 b+c>a=>b-a>-c

                 c+a>b=>c-b>-a

(BĐT tam giác)

=>VT>a2b2+a2c2+b2c2+a2.c.(-c)+b2.a.(-a)+c2.b.(-b)

=0

=>VT>0 =>dpcm

18 tháng 6 2015

Do a,b,c là độ dài cạnh tam giác nên:

a<b+c 

b<c+a

c<a+b

ta co:

a^2b +b^2c+c^2a+ca^2+bc^2+ab^2

= a^2(b+c) + b^2(c+a) + c^2(a+b)

> a^2.a +b^2.b+c^2.c =a^3+b^3+c^3

<=> a^2b +b^2c+c^2a+ca^2+bc^2+ab^2 - a^3-b^3-c^3 > 0

30 tháng 4 2017

Có a,b,c>0;a+b>c,b+c>a,c+a>b

=>a+b-c>0,b+c-a>0,c+a-b>0

=>c2(a+b-c)>0,a2(b+c-a)>0,b2(c+a-b)>0

=>c2(a+b-c)+a2(b+c-a)+b2(c+a-b)>0

=>(đẳng thức đề bài) > 0

16 tháng 6 2016

bạn sử dụng BĐT tam giác :

a  <  b + c => a2 < b2 + c2

b < a + c => b2 < a2 + c2

c < a + b => c2 < a2 + b2

bạn tự làm nhé vì mik làm bạn cũng ko chọn mik

16 tháng 6 2016

Ta có:A = a+ b+ c- 2a2b- 2b2c- 2a2c= (a2)+ (b2)+ (c2)+ 2a2b- 2b2c- 2a2c+

4a2b= (a2+b2-c2)2-4a2b2

=(a2+b2-c2-2ab)(a2+b2-c2+2ab) (1)

Vì a;b;c là 3 cạnh của tam giác nên c>|a-b| =>c2>(|a-b|)2=(a-b)2

=>c2>a2+b2-2ab =>a2+b2-c2-2ab<0 (2)

lại có a+b>c =>(a+b)2>c2 =>a2+b2-c2 +2ab > 0 (3)

Từ (1)(2)(3) =>A<0 (Đpcm)

22 tháng 7 2015

Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2  + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 =  (a2 + b2 - c2)2 - 4a2b2

= (a2 + b2 - c2 - 2ab).(a2 + b2  - c+ 2ab)  (1)

Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c> (|a - b|)2 = (a - b)2

=> c2 > a2 + b2 - 2ab => a2 + b - c2 - 2ab  < 0  (2)

lại có : a+ b > c => (a+ b) 2 > c=> a2 + b2  - c+ 2ab > 0  (3)

Từ (1)(2)(3) => A < 0 => đpcm

21 tháng 11 2017
dau = so 2 -4a^2b^2 moi dung nha