Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B c B' A K H
Lấy B' đối xứng với B qua AK ( K thỏa mãn \(BK\perp AB\); \(AK\perp BK\))
CM được : \(\hept{\begin{cases}BB'=2BK=2AH=2h_a\\AB=AB'\end{cases}}\)
Ta có : \(BB'^2=CB'^2-BC^2\le\left(AB'+AC\right)^2-BC^2=\left(AB+AC\right)^2-BC^2\)
\(\Rightarrow\left(2h_a\right)^2=4h_a^2\le\left(b+c\right)^2-a^2\)
Tương tự , ta có : \(4h_b^2\le\left(a+c\right)^2-b^2\) và \(4h_c^2\le\left(a+b\right)^2-c^2\)
Suy ra : \(4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2-a^2-b^2-c^2\)
\(\Rightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le a^2+b^2+c^2+2ab+2bc+2ac=\left(a+b+c\right)^2\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)Hay \(P\ge4\)
" = " khi \(B',A,C\) thẳng hàng \(\Rightarrow A\)là trung điểm của \(B'C\)\(\Rightarrow AH\)là trung tuyến \(\Delta ABC\Rightarrow\Delta ABC\)cân tại \(A\)
Tương tự , \(\Delta ABC\) lần lượt cân tại \(B,C\)
Suy ra : \(\Delta ABC\) đều
Vậy \(MIN_P=4\)đạt được khi \(\Delta ABC\)đều
Theo đề bài thì ta có:
\(ah_a=bh_b=ch_c=2\)
Ta có:
\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)
\(=\left(2+2+2\right)^2=36\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\)
Câu a:
Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$
Từ $I$ hạ đường cao $ID, IE, IF$ xuống lần lượt cạnh $BC,CA,AB$
Ta có:
\(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}=\frac{ID.BC}{2}+\frac{IE.AC}{2}+\frac{IF.AB}{2}\)
\(=\frac{r.BC}{2}+\frac{r.AC}{2}+\frac{r.AB}{2}=\frac{r(AB+BC+AC)}{2}=\frac{r(a+b+c)}{2}\)
Ta có đpcm.
Câu c:
Ta có: \(h_a^2+h_b^2+h_c^2=\left(\frac{2S}{a}\right)^2+\left(\frac{2S}{b}\right)^2+\left(\frac{2S}{c}\right)^2\)
\(=4S^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\geq 4S^2.\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\) ( BĐT AM-GM dạng \(x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\) )
\(\geq 4S^2.\frac{1}{3}\left(\frac{9}{a+b+c}\right)^2=\frac{108S^2}{(a+b+c)^2}(*)\) (áp dụng BĐT Cauchy-Schwarz)
Mặt khác:
Theo kết quả phần a: \(r=\frac{2S}{a+b+c}\Rightarrow 27r^2=\frac{108S^2}{(a+b+c)^2}(**)\)
Từ \((*);(**)\rightarrow h_a^2+h_b^2+h_c^2\geq 27r^2\) (đpcm)
\(\frac{S}{h_a}+\frac{S}{h_b}+\frac{S}{h_c}=\frac{1}{2}\left(a+b+c\right)=p=\frac{S}{r}\)
\(\Rightarrow\frac{1}{r}=\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\)
Học tốt!!!!!!!!!!!!!!!!
Gọi O là tâm đường tròn bàng tiếp trong góc A.Ta có:
\(S_{OAC}+S_{OAB}-S_{OBC}=S_{ABC}\Rightarrow b.r_a+c.r_a-a.r_a=2S\Rightarrow S=\frac{r_a\left(b+c-a\right)}{2}=r_a\left(p-a\right).\)(p là nửa chu vi tam giác ABC)
Cm tương tự: \(S=r_a\left(p-a\right)=r_b\left(p-b\right)=r_c\left(p-c\right)=p.r\)
\(\Rightarrow\frac{S}{r_a}+\frac{S}{r_b}+\frac{S}{r_c}=p-a+p-b+p-c=3p-2p=p=\frac{S}{r}\Rightarrow\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}\)(đpcm)
Đặt BC=a, AC=b, AB=c
\(P=\frac{a+b+c}{2}\)
S là diện tích của tam giác ABC
Ta có công thức tính bán kính của các đường tròn bàng tiếp:
Tại góc A: \(r_a=\frac{S}{P-a}\)
Tại góc B: \(r_b=\frac{S}{P-b}\)
Tại góc C: \(r_c=\frac{S}{P-c}\)
Công thức tính bán kính đường tròn nội tiếp tam giác ABC:
\(r=\frac{S}{P}\)
=> \(\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}=\frac{P-a}{S}+\frac{P-b}{S}+\frac{P-c}{S}=\frac{3P}{S}-\frac{a+b+c}{S}\)
\(=\frac{3P}{S}-\frac{2P}{S}=\frac{P}{S}=\frac{1}{r}\)
Bài2 ,
Ta có\(sin_P^2+cos_P^2=1\)
mà \(2\left(sin_P^2+cos_P^2\right)\ge\left(sin_P+cos_p\right)^2\Rightarrow\left(sin_p+cos_p\right)\le\sqrt{2}\)
^_^
Ta có :\(S_{ABC}=\dfrac{1}{2}.a.h_a=\dfrac{1}{2}.b.h_b=\dfrac{1}{2}.c.h_c\)
\(\Rightarrow a.h_a=b.h_b=c.h_c=2S_{ABC}=2\)
Áp dụng bất đẳng thức bunhiacopski ta có :
\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(a.h_a+b.h_b+c.h_c\right)^2=36\)
Dấu "=" xảy ra khi tam giác ABC đều