Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
Tương tự :
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế :
\(\Rightarrow2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = b = c
Hình bạn tự vẽ nhá !!
Xét \(\Delta BEC\) và \(\Delta CDB\) có :
\(\widehat{EBC}=\widehat{DCB}\left(gt\right)\); \(BC\)chung; \(\widehat{DBC}=\widehat{ECB}\left(=\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\right)\)
\(\Rightarrow\Delta BEC=\Delta CDB\) \(\left(g-c-g\right)\)\(\Rightarrow BE=CD\)
Do đó \(\frac{BE}{AB}=\frac{CD}{AC}\) theo định lý Ta lét đảo \(\Rightarrow DE//BC\)
\(\Rightarrow\widehat{DBC}=\widehat{EDB}=\widehat{EBD}\) (SLT)
\(\Rightarrow\Delta BED\) cân tại \(E\) \(\Rightarrow DE=BE=c\)
Do DE//BC ta có : \(\frac{DE}{BC}=\frac{AE}{AB}\) (ĐL Talét) (1) Và \(\frac{DE}{AB}=\frac{BE}{AB}\) (2)
Cộng vế với vế của (1) và (2) ta được : \(\frac{DE}{BC}+\frac{DE}{AB}=\frac{AE}{AB}+\frac{BE}{AB}=\frac{AE+BE}{AB}=\frac{AB}{AB}=1\)
\(\Leftrightarrow DE\left(\frac{1}{AB}+\frac{1}{BC}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{BC}=\frac{1}{DE}\)
Hay \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) (ĐPCM)
Dễ thấy a,b,c là độ dài của tam giác nên
a + b - c > 0 ; b + c - a > 0 ; c+a-b > 0
Theo Cauchy-Schwarz thì
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi a=b=c = 1
Ta có: Vì chu vi của tam giác là 3 nên a + b + c = 3
Xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)
Tương tự CM được:
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\) và \(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)
Cộng vế 3 BĐT trên lại ta được:
\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3^2}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi: \(a=b=c\)
Ta có:\(3\left(\frac{ab+bc+ca}{a+b+c}\right)^2\le3\left[\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}\right]^2\)\(=3\left(\frac{a+b+c}{3}\right)^2=\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\)(1)
Mặt khác:\(\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2\ge2.\frac{ab}{c}.\frac{bc}{a}=2b^2\)(2)
Tương tự ta cũng có:\(\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\ge2c^2\)(3);\(\left(\frac{ca}{b}\right)^2+\left(\frac{ab}{c}\right)^2\ge2a^2\)(4)
Cộng theo vế (1),(2),(3) ta được:\(2\left[\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\right]\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\ge a^2+b^2+c^2\)(5)
Từ (1) và (5) suy ra điều phải chứng minh.Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng BĐT AM-GM cho 3 bộ số thực \(a+\frac{b}{ac}\), \(b+\frac{c}{ab}\)và \(c+\frac{a}{bc}\)
Ta có:
\(a+\frac{b}{ac}\ge2\sqrt{\frac{ab}{ac}}=2\sqrt{\frac{b}{c}}\)(1)
\(b+\frac{c}{ab}\ge2\sqrt{\frac{bc}{ab}}=2\sqrt{\frac{c}{a}}\)(2)
\(c+\frac{a}{bc}\ge2\sqrt{\frac{ac}{bc}}=2\sqrt{\frac{a}{b}}\)(3)
Nhân vế theo vế (1),(2) và (3)
\(VT\ge8\sqrt{\frac{abc}{abc}}=8\)
Vậy ....................
Ta có a, b , c là 3 cạnh của 1 tam giác
=> Đặt: z = a + b - c > 0 ; x = b + c - a> 0 ; y = a + c - b>0
khi đó: x + y + z = a + b + c
và \(a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
Để chứng minh: \(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)(1)
Ta cần chứng minh:
\(\frac{\left(y+z\right)\left(x+z\right)}{4z}+\frac{\left(x+z\right)\left(z+y\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}\ge x+y+z\)
<=> \(\frac{xy+xz+zy+x^2}{z}+\frac{yz+x^2+yx+xz}{x}+\frac{xz+xy+y^2+yz}{y}\ge4\left(x+y+z\right)\)
<=> \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\)(2)
Ta có: \(\frac{\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2}{3}\ge\frac{xy}{z}.\frac{yz}{x}+\frac{yz}{x}.\frac{zx}{y}+\frac{zx}{y}.\frac{xy}{z}\)
\(=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) với mọi x; y ; z
<=> \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\) với mọi x; y ; z dương
Vậy (2) đúng do đó (1) đúng,
Nguyễn Linh Chi hỏi nhé : nếu x + y + z thì phải = 2 ( a + b + c ) chứ