K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

a) Áp dụng BĐT tam giác:

b-c<a

\(\Leftrightarrow\left(b-c\right)^2< a^2\)(đpcm).

b) Áp dụng BĐT tam giác:

\(a< b+c\)

\(\Leftrightarrow a^2< ab+ac\)

TTự, có: \(b^2< bc+ab,c^2< ac+bc\)

Cộng 3 BĐT, ta được: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

11 tháng 2 2019

BĐT là j ạ

13 tháng 5 2016

ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca

<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0

<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0

<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0

<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)

dấu = xảy ra khi a =b=c

 

23 tháng 5 2016

 

ab<c<=>a2+b22ab<c2a−b<c<=>a2+b2−2ab<c2

bc<a<=>b2+c22bc<a2b−c<a<=>b2+c2−2bc<a2

ac<b<=>a2+c22ac<b2a−c<b<=>a2+c2−2ac<b2

Cộng các vế ta có

2(a2+b2+c2)2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c22(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2 (đpcm)

 
24 tháng 12 2015

Áp dụng bất đẳng thức tam giác có a+b>c

                                                            <=>ac+bc > c2  (c>0)

<=>a+b
   Tương tự có:ab+cb>b2    ac+ab >a2ab+bc>b2,ac+ab>a2

Cộng các bất đẳng thức trên ra điều phải chứng minh

2(a2+b2+c2)-2(ab+bc+ac)<a2+b2+c2<=>2(a2+b2+c2)>a2+b2+c2 (dpcm)

đúng rồi

21 tháng 8 2016

Ta có

\(a< b+c\left(bđt\Delta\right)\)

\(\Rightarrow2a< a+b+c\)

\(\Rightarrow2a< 2\)

\(\Rightarrow a< 1\)

\(\Rightarrow-a>-1\)

\(\Rightarrow1-a>0\)

Tương tự với b và c

\(\Rightarrow\begin{cases}1-b>0\\1-c>0\end{cases}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca-abc>0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca>abc\)

\(\Rightarrow1-2+ab+bc+ca>abc\)

\(\Rightarrow-1+ab+bc+ca>abc\)

\(\Rightarrow-2+2ab+2bc+2ca>2abc\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca-2>2acb+a^2+b^2+c^2\)

Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow\left(a+b+c\right)^2-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow2^2-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow2abc+a^2+b^2+c^2< 2\)

đpcm

 

 

21 tháng 8 2016
Giả sử a>=b>=c. Ta có:
a<b+c => 2a<a+b+c=2=>a<1=> b<1,c<1
=> (1-a)(1-b)(1-c)>0. Rút gọn ta được
ab+bc+ca >1+abc
Ta lại có: (a+b+)^2 =a^2+b^2+c^2 +2(ab+bc+ca)
=> 4= a^2+b^2+c^2+2(ab+bc+ca)
=> 4> a^2+b^2+c^2+2(1+abc)=> 4>a^2+b^2+c^2+2+2abc
=> a^2+b^2_c^2+2abc<2 
 
NV
16 tháng 11 2019

\(2a^2+2b^2+2ab+2ac+2bc< 0\)

\(\Leftrightarrow\left(a+b+c\right)^2+a^2+b^2-c^2< 0\)

\(\Leftrightarrow a^2+b^2< c^2-\left(a+b+c\right)^2\le c^2\)

\(\Rightarrow a^2+b^2< c^2\)