Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt biểu thức vế trái là A
Có \(a+\frac{1}{a+1}=\frac{a^2+a+1}{a+1}=\frac{a^2}{a+1}+1=\frac{a^2}{a+1}+\frac{1}{2}+\frac{1}{2}\)
Áp dụng BĐT Cauchy-Schwarz:
\(a+\frac{1}{a+1}\geq \frac{(a+1+1)^2}{a+1+2+2}=\frac{(a+2)^2}{a+5}\)
Thực hiện tương tự với các phân thức còn lại và nhân theo vế:
\(\Rightarrow A\geq \frac{(a+2)^2(b+2)^2(c+2)^2}{(a+5)(b+5)(c+5)}\)
Áp dụng BĐT AM-GM:
\((a+2)(b+2)(c+2)\geq 3\sqrt[3]{a}.3\sqrt[3]{b}.3\sqrt[3]{c}=27\sqrt[3]{abc}\geq 27\)
\(\Rightarrow A\geq \frac{27(a+2)(b+2)(c+2)}{(a+5)(b+5)(c+5)}\) (1)
Ta sẽ cm
\(\frac{27(a+2)(b+2)(c+2)}{(a+5)(b+5)(c+5)}\geq \frac{27}{8}(*)\Leftrightarrow 8(a+2)(b+2)(c+2)\geq (a+5)(b+5)(c+5)\)
\(\Leftrightarrow 8[abc+8+2(ab+bc+ac)+4(a+b+c)]\geq abc+125+5(ab+bc+ac)+25(a+b+c)\)
\(\Leftrightarrow 7abc+11(ab+bc+ac)+7(a+b+c)\geq 61\)
BĐT trên luôn đúng theo AM_GM:
\(7abc+11(ab+bc+ac)+7(a+b+c)\geq 7abc+33\sqrt[3]{a^2b^2c^2}+21\sqrt[3]{abc}\geq 7+33+21=61\)
Do đó (*) đúng.
Từ \((1);(2)\Rightarrow A\geq \frac{27}{8}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Áp dụng BĐT Cauchy cho 3 số dương a , b , c , ta có :
\(D=\dfrac{a}{a+2b}+\dfrac{b}{b+2c}+\dfrac{c}{c+2a}=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{b^2+2bc}+\dfrac{c^2}{c^2+2ac}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)
Theo BĐT Bu nhi a cốp xki ta có :
\(\left(a+b+c+d\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\ge16\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\)
Áp dụng vào bài toán ta có :
\(\dfrac{1}{3a+3b+2c}=\dfrac{1}{16}.\dfrac{16}{\left(a+b\right)+\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}\le\dfrac{1}{16}\left(\dfrac{1}{a+b}+\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
\(\dfrac{1}{3b+3c+2a}=\dfrac{1}{16}.\dfrac{16}{\left(b+c\right)+\left(b+c\right)+\left(a+b\right)+\left(c+a\right)}\le\dfrac{1}{16}\left(\dfrac{1}{b+c}+\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{c+a}\right)\)
\(\dfrac{1}{3c+3a+2b}=\dfrac{1}{16}.\dfrac{16}{\left(c+a\right)+\left(c+a\right)+\left(a+b\right)+\left(b+c\right)}\le\dfrac{1}{16}\left(\dfrac{1}{c+a}+\dfrac{1}{c+a}+\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\)
Cộng từng vế của BĐT ta được :
\(\dfrac{1}{3a+3b+2c}+\dfrac{1}{3b+3c+2a}+\dfrac{1}{3c+3a+2b}\le\dfrac{1}{16}\left(\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\right)=\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{1}{4}.6=\dfrac{3}{2}\)
Vậy GTLN của A là \(\dfrac{3}{2}\) . Dấu \("="\) xảy ra khi \(a=b=c=\dfrac{1}{4}\)
Đặt x = \(\frac{1}{2a+1},y=\frac{1}{2b+1},z=\frac{1}{2c+1}\)
Khi đó \(a=\frac{1-x}{2x},b=\frac{1-y}{2y},c=\frac{1-z}{2z}\)
Ta thấy 0 < x, y, z < 1 và x + y + z \(\ge1\)
Bất đẳng thức cần chứng minh trở thành :
\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\ge\frac{3}{7}\)
Áp dụng bất đẳng thức Bunhiacốpxki ta có :
\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\)
\(=\frac{x^2}{3x-2x^2}+\frac{y^2}{3y-2y^2}+\frac{z^2}{3z-2z^2}\)
\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-2\left(x^2+y^2+z^2\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-\frac{2}{3}\left(x+y+z\right)^2}\)
\(=\frac{3}{\frac{9}{x+y+z}-2}\ge\frac{3}{7}\)
Cbht
AM-GM :\(\dfrac{1}{a^4+b^2+2ab^2}=\dfrac{1}{a^4+b^2+ab^2+ab^2}\le\dfrac{1}{4\sqrt[4]{a^6b^6}}\)
\(\Rightarrow Q\le\dfrac{1}{2\sqrt[4]{a^6b^6}}\) (1)
AM - GM : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\Leftrightarrow2\ge\dfrac{2}{\sqrt{ab}}\Leftrightarrow ab\ge1\) (2)
Kết hợp (1) và (2) ta có đpcm
a) \(\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{-1}{x-1}\)
\(=\dfrac{x^3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{-1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^4-x+x^3+x+x-1-x+1}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^4+x^3}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^3}{x-1}\)
b) \(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
\(=\dfrac{x^3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{x^2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{1\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^3\left(x+1\right)-x^2\left(x-1\right)-1\left(x+1\right)+1\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^4+x^3-x^3+x^2-x-1+x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^4+x^2-2}{\left(x-1\right)\left(x+1\right)}\)
c) \(\dfrac{4-2x+x^2}{2+x}-2-x\)
\(=\dfrac{4-2x+x^2}{2+x}-\dfrac{2\left(2+x\right)}{2+x}-\dfrac{x\left(2+x\right)}{2+x}\)
\(=\dfrac{4-2x+x^2-4-2x-2x-x^2}{2+x}\)
\(=\dfrac{-6x}{2+x}\)
Còn lại thì dễ rồi, bạn tự làm nha ^^
Hình như sai đề :
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)
\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)
\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )
Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)
\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)
\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )
CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )
Thay ( * ) và ( * ') vào E , ta được :
\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)
\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)
\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)
\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)
\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)
\(=\dfrac{0}{2}=0\)
Vậy \(E=0\)
hí...hí...CTV....mk làm đc bn cho mk 5GP nha
\(\dfrac{1}{6a+1}+\dfrac{\dfrac{4}{49}}{2}\ge\dfrac{\left(1+\dfrac{2}{7}\right)^2}{3\left(2a+1\right)}\)