K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 2

\(a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right)\)

\(\Rightarrow P=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\)

Áp dụng BĐT Cô-si:

\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\sqrt{\dfrac{\left(a+b\right)^2\left(a+c\right)\left(b+c\right)}{\left(b+c\right)\left(a+c\right)}}=2\left(a+b\right)\)

\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+c\right)\)

\(\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+b\right)\)

Cộng vế:

\(2P\ge4\left(a+b+c\right)=4\Rightarrow P\ge2\)

17 tháng 2

Cảm ơn thầy ạ.

8 tháng 1 2021

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

8 tháng 1 2021

đề là tìm GTNN ạ, dù gì cũng cảm ơn bạn nha <3

8 tháng 2 2023

Theo đề ra, ta có:

\(a^2+b^2+c^2\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

Theo BĐT Cô-si:

\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)

Ta đặt \(a^2+b^2+c^2=k\)

Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

Vì thế nên \(k\ge\dfrac{1}{3}\)

Khi đấy:

\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)

\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).

21 tháng 5 2022

https://hoc24.vn/cau-hoi/cho-abc-0-thoa-man-abbcca3-tim-gia-tri-nho-nhat-cua-pdfrac13a1b2dfrac13b1c2dfrac13c1a2.6181078378966

NV
22 tháng 2 2021

\(P=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)

\(P\le\dfrac{ab}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{bc}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(a+b+c\right)=3\)

\(P_{max}=3\) khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$

$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

9 tháng 6 2021

cảm ơn ạ

 

11 tháng 6 2021

Cho \(a+b+c=1\) nhé các bạn.

11 tháng 6 2021

Đặt ab + bc + ca = q; abc = r. Ta có:

\(A=\dfrac{\left(ab+bc+ca\right)+6\left(a+b+c\right)+27}{abc+3\left(ab+bc+ca\right)+9\left(a+b+c\right)+27}-\dfrac{1}{3\left(ab+bc+ca\right)}\)

\(A=\dfrac{q+33}{r+3q+36}-\dfrac{1}{3q}\).

Theo bất đẳng thức Schur: \(a^3+b^3+c^3+3abc\ge a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

\(\Leftrightarrow\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow9r\ge4q-1\Leftrightarrow r\ge\dfrac{4q-1}{9}\).

Từ đó \(A\le\dfrac{q+33}{\dfrac{4q-1}{9}+3q+36}-\dfrac{1}{3q}\)

\(\Rightarrow A\leq \frac{27q^2+860q-323}{93q^2+969q}\)

\(\Rightarrow A+\dfrac{1}{10}=\dfrac{\left(3q-1\right)\left(121q+3230\right)}{30q\left(31q+323\right)}\le0\). (Do \(q=ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\))

\(\Rightarrow A\leq \frac{-1}{10}\). Dấu "=" xảy ra khi và chỉ khi a = b = c = 1.