K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Mk cx đang định hỏi câu này

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Lời giải:
a)

Xét hiệu \(\frac{a^3}{b}-(a^2+ab-b^2)=(\frac{a^3}{b}-a^2)-(ab-b^2)\)

\(=\frac{a^3-a^2b}{b}-b(a-b)=\frac{a^2(a-b)}{b}-b(a-b)=(a-b)\left(\frac{a^2}{b}-b\right)\)

\(=(a-b).\frac{a^2-b^2}{b}=\frac{(a-b)^2(a+b)}{b}\geq 0, \forall a,b>0\)

Do đó \(\frac{a^3}{b}\geq a^2+ab-b^2\) (đpcm)

Dấu "=" xảy ra khi $a=b$

b)

Áp dụng BĐT Cauchy cho các số dương:

\(\frac{a^3}{b}+ab\geq 2a^2\)

\(\frac{b^3}{c}+bc\geq 2b^2\)

\(\frac{c^3}{a}+ac\geq 2c^2\)

Cộng theo vế:

\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\)

Mà cũng theo BĐT Cauchy:

\(a^2+b^2+c^2=\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\geq \frac{2ab}{2}+\frac{2bc}{2}+\frac{2ca}{2}=ab+bc+ca\)

\( \Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\geq 2(ab+bc+ac)-(ab+bc+ac)=ab+bc+ac\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

16 tháng 5 2019

b) Áp dụng bđt bunhiacopxki ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

6 tháng 2 2020

\(\Rightarrow a^2+b^2+c^2+d^2+2\left(ab+bc+dc+ad\right)=4\)(*)

Có 2(ab+bc+dc+ad)<=2(a^2+b^2+c^2+d^2 )(**)

Cộng 2 vế của (**) cho a^2+b^2+c^2+d^2 có

3(a^2+b^2+c^2+d^2)>=4

7 tháng 4 2017

ủng hộ mk nha mọi người

7 tháng 4 2017

mình đag gấp nhờ mọi người giải giúp

28 tháng 8 2019

\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)