Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz dạng phân thức, ta được: \(VT=\frac{a^4}{a^2+a^2b-a^3}+\frac{b^4}{b^2+b^2c-b^3}+\frac{c^4}{c^2+c^2a-c^3}\)\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\) \(=\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)
Ta cần chứng minh \(\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\ge1\)hay \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)
Đây là bất đẳng thức quen thuộc có nhiều cách chứng minh:
** Cách 1: Áp dụng AM - GM, ta được: \(a^3+a^3+b^3\ge3a^2b\); \(b^3+b^3+c^3\ge3b^2c\); \(c^3+c^3+a^3\ge3c^2a\)
Cộng từng vế ba bất đẳng thức trên
** Cách 2: Giả sử \(a\le b\le c\)
Có: \(a^3+b^3+c^3=a^2b+b^2c+c^2a+\left(c^2-a^2\right)\left(b-a\right)+\left(c^2-b^2\right)\left(c-b\right)\ge a^2b+b^2c+c^2a\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\).
Or the following SOS:
* Hoặc mạnh hơn với a,b,c thực thỏa mãn \(a+b\ge0,b+c\ge0,c+a\ge0\)
\(a^3+b^3+c^3-a^2b-b^2c-c^2a\)
\(=\frac{\left(a^2+b^2-2c^2\right)^2+3\left(a^2-b^2\right)^2+\Sigma_{cyc}4\left(a+b\right)\left(c+a\right)\left(a-b\right)^2}{8\left(a+b+c\right)}\ge0\)
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
Nhân cả hai vế của bất đẳng thức với \(a^2+b^2+c^2+ab+bc+ca\)và chú ý
\(\frac{a^2\left(a^2+b^2+c^2+ab+bc+ca\right)}{a^2+ab+b^2}=a^2+\frac{ca^2\left(a+b+c\right)}{a^2+ab+b^2}\)
ta sẽ đưa điều phải chứng minh trở thành
\(\text{Σ}_{cyc}\left(a^2+\frac{ca^2\left(a+b+c\right)}{a^2+ab+b^2}\right)\ge a^2+b^2+c^2+ab+bc+ca\)
hay là \(\frac{ca^2}{a^2+ab+b^2}+\frac{ab^2}{b^2+bc+c^2}+\frac{bc^2}{c^2+ca+a^2}\ge\frac{ab+bc+ca}{a+b+c}\)
Ta có thể thấy ngay bđt này hiển nhiên đúng theo bđt Cauchy - Schwarz:
\(\text{Σ}\frac{ca^2}{a^2+ab+b^2}=\text{Σ}\frac{c^2a^2}{c\left(a^2+ab+b^2\right)}\ge\frac{\left(\text{Σ}ca\right)^2}{\text{Σ}c\left(a^2+ab+b^2\right)}=\frac{ab+bc+ca}{a+b+c}\)
Đẳng thức xảy ra khi và chỉ khi a = b = c
Đặt \(x=\frac{b}{a};y=\frac{c}{b};z=\frac{a}{c}\Rightarrow xyz=1\). BĐT đưa về:
\(\frac{1}{x^2+x+1}+\frac{1}{y^2+y+1}+\frac{1}{z^2+z+1}\ge1\) thật quen thuộc.
Đặt \(\left(x;y;z\right)=\left(\frac{uv}{w^2};\frac{vw}{u^2};\frac{uw}{v^2}\right)\). Chứng minh: \(\Sigma_{cyc}\frac{w^4}{u^2v^2+w^2uv+w^4}\ge1\)
. Áp dụng BĐT Cauchy-Schwarz dạng Engel và chú ý: \(uvw\left(u+v+w\right)\le u^2v^2+v^2w^2+w^2u^2\)
\(VT\ge\frac{\left(u^2+v^2+w^2\right)^2}{u^4+v^4+w^4+u^2v^2+v^2w^2+w^2u^2+uvw\left(u+v+w\right)}\ge1\)
Đặt \(\sqrt{a^2-1}=x;\sqrt{b^2-1}=y;\sqrt{c^2-1}=z\)ta viết lại thành x2+y2+z2=1.Bất đẳng thức cần chứng minh tương đương với
\(\left(x+y+z\right)\left(\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\right)\le\frac{9}{2}\)
Theo bất đẳng thức Cauchy-Schwarz ta có
\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\le\sqrt{\Sigma\frac{3x^2}{2x^2+y^2+z^2}}\le\sqrt{\frac{3}{4}\Sigma\left(\frac{x^2}{x^2+y^2}+\frac{x^2}{x^2+z^2}\right)}=\frac{3}{2}\)
\(\Leftrightarrow\)\( {\displaystyle \displaystyle \sum } \)\(\frac{y+z}{\sqrt{x^2+1}}\le\sqrt{\Sigma\frac{3\left(y+z\right)^2}{2x^2+y^2+z^2}}\le\sqrt{3\Sigma\left(\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\right)}=3\)
Dấu đẳng thức xảy ra khi \(a=b=c=\frac{2}{\sqrt{3}}\)
Cách khác:
Áp dụng BĐT AM-GM có:
\(\frac{a^4}{b+2}+\frac{b+2}{9}\geq \frac{2}{3}a^2\)
Hoàn toàn tương tự với các phân thức khác và cộng theo vế ta có:
\(\frac{a^4}{b+2}+\frac{b^4}{c+2}+\frac{c^4}{a+2}\geq \frac{2}{3}(a^2+b^2+c^2)-\frac{a+b+c+6}{9}=2-\frac{a+b+c+6}{9}(1)\)
Cũng theo hệ thức quen thuộc của BĐT AM-GM:
$3(a^2+b^2+c^2)\geq (a+b+c)^2\Leftrightarrow 9\geq (a+b+c)^2\Rightarrow a+b+c\leq 3(2)$
Từ $(1);(2)\Rightarrow \frac{a^4}{b+2}+\frac{b^4}{c+2}+\frac{c^4}{a+2}\geq 2-\frac{3+6}{9}=1$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Ta có:\(\sqrt{4a+3b+2}\le\frac{9+4a+3b+2}{6}=\frac{4a+3b+11}{6}\)
\(\Rightarrow\sum\frac{a^2}{\sqrt{4a+3b+2}}\ge6.\sum\frac{a^2}{4a+3b+11}\)
Lại có:\(6.\sum\frac{a^2}{4a+3b+11}\ge6.\frac{\left(a+b+c\right)^2}{7\left(a+b+c\right)+33}=\frac{54}{54}=1\)
\(\Rightarrow\sum\frac{a^2}{\sqrt{4a+3b+2}}\ge1\)
"="<=>x=y=z=1
\(VT\ge\frac{\left(a+b+c\right)^2}{\sqrt{4a+3b+2}+\sqrt{4b+3c+2}+\sqrt{4c+3a+2}}\ge\frac{\left(a+b+c\right)^2}{\sqrt{\left(1+1+1\right)\left(4a+3b+2+4b+3c+2+4c+3a+2\right)}}\)
\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{\sqrt{3\left(7\left(a+b+c\right)+6\right)}}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)