Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cần chứng minh nếu a,b,c đôi một khác nhau và a3+b3+c3=3abc thì a+b+c=0
Ta có: a3+b3+c3=3abc
<=> a3+b3+c3-3abc=0
<=> (a+b)3-3ab(a+b)+c3-3abc=0
<=> (a+b+c)(a2+b2+c2+2ab-ca-bc)-3ab(a+b+c)=0
<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0
\(=>\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
• a2+b2+c2-ab-bc-ca=0
<=> 2a2+2b2+2c2-2ab-2bc-2ca=0
<=> (a-b)2+(b-c)2+(c-a)2=0=> a=b=c
Mà a,b,c đôi một khác nhau nên vô lí
Do vậy nên a+b+c=0
Áp dụng bài toán chứng minh trên vào a3b3+b3c3+c3a3=3a2b2c2 ta có ab+bc+ca=0
\(=>\hept{\begin{cases}bc+ca=-ab\\ca+ab=-bc\\ab+bc=-ac\end{cases}=>\hept{\begin{cases}c\left(a+b\right)=-ab\\a\left(b+c\right)=-bc\\b\left(c+a\right)=-ac\end{cases}}}\)
Với a,b,c khác 0 ta có
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{c\left(a+b\right)}{bc}.\frac{a\left(b+c\right)}{ca}.\frac{b\left(c+a\right)}{ab}=\frac{-ab}{bc}.\frac{-bc}{ca}.\frac{-ca}{ab}=-1\)
Vậy A=-1
Dean thật, gõ gần xong rồi tự nhiên nó tạch, phải gõ lại -.-
Từ gt, ta suy ra:
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right].\dfrac{1}{2}=0\)(Tự phân tích, không còn kiên nhẫn để gõ lại)
Mà a+b+c khác 0 => a=b=c
Thay vào thì C=8
bai 2 :
dat cac tich ab , bc , ca lan luot la x,y,z ( khac 0 )
thay vao ta dc : x^3+y^3+z^3=3xyz
=> (x+y)(x^2-2xy+y^2)+z^3-3xyz=0
=>(x+y)(x^2+2xy+y^2)+z^3-3xy(x+y)-3xyz=0
=》(x+y+z)【(x+y)^2 -(x+y)z+z^2】-3xy(x+y+z)=0
=>(x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0
=>\(\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)=0
=> x+y+z=0 hoac x=y=z
TH1 : a+b+c=0
=>P=-1
TH2 : a=b=c
=>P=8
\(S=\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)
có \(1+\dfrac{2a}{3b}\ge2\sqrt{\dfrac{2a}{3b}}\)(BDT AM-GM)
\(=>1+\dfrac{2b}{3c}\ge2\sqrt{\dfrac{2b}{3c}}\)
\(=>1+\dfrac{2c}{3d}\ge2\sqrt{\dfrac{2c}{3d}}\)
\(=>1+\dfrac{2d}{3a}\ge2\sqrt{\dfrac{2d}{3a}}\)
\(=>S\ge16\sqrt{\dfrac{2a.2b.2c.2d}{3a.3b.3c.3d}}=16\sqrt{\dfrac{16abcd}{81abcd}}=16\sqrt{\dfrac{16}{81}}=\dfrac{64}{9}\)
\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)
Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)
Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)
\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^3}{2b+3c}+\frac{b^3}{2c+3a}+\frac{c^3}{2a+3b}=\frac{a^4}{2ab+3ac}+\frac{b^4}{2bc+3ba}+\frac{c^4}{2ac+3bc}\)
\(\geq \frac{(a^2+b^2+c^2)^2}{2ab+3ac+2bc+3ba+2ac+3bc}=\frac{(a^2+b^2+c^2)^2}{5(ab+bc+ac)}\)
Theo hệ quả của BĐT AM-GM ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)(ab+bc+ac)}{5(ab+bc+ac)}=\frac{a^2+b^2+c^2}{5}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
Bài 1:
\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)
\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)
Áp dụng BĐT Cô-si:
\(\frac{x}{y}+\frac{y}{x}\geq 2\)
\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
Áp dụng BĐT SVac-xơ kết hợp với Cô-si:
\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Cộng các BĐT trên :
\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)
Bài 2:
Áp dụng BĐT Svac-xơ:
\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)
\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)
Cộng theo vế và rút gọn :
\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x;y;z>0\\x+y+z=3\end{matrix}\right.\)
\(P=\dfrac{x}{\left(3-x\right)^2}+\dfrac{y}{\left(3-y\right)^2}+\dfrac{z}{\left(3-z\right)^2}\)
Ta có đánh giá sau: \(\dfrac{t}{\left(3-t\right)^2}\ge\dfrac{2t-1}{4};\forall t\in\left(0;3\right)\)
Thực vậy, BĐT đã cho tương đương:
\(4t\ge\left(2t-1\right)\left(3-t\right)^2\)
\(\Leftrightarrow-2t^3+13t^2-20t+9\ge0\)
\(\Leftrightarrow\left(9-2t\right)\left(t-1\right)^2\ge0\) (luôn đúng với \(t< 3\))
Áp dụng ta được:
\(P\ge\dfrac{2x-1}{4}+\dfrac{2y-1}{4}+\dfrac{2z-1}{4}=\dfrac{2\left(x+y+z\right)-3}{4}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Cách khác:
Sau khi đặt ẩn phụ, ta có:
\(P=\dfrac{x}{\left(3-x\right)^2}+\dfrac{y}{\left(3-y\right)^2}+\dfrac{z}{\left(3-z\right)^2}=\dfrac{x}{\left(y+z\right)^2}+\dfrac{y}{\left(z+x\right)^2}+\dfrac{z}{\left(x+y\right)^2}\)
\(\Rightarrow3P=\left(x+y+z\right)\left(\dfrac{x}{\left(y+z\right)^2}+\dfrac{y}{\left(z+x\right)^2}+\dfrac{z}{\left(x+y\right)^2}\right)\ge\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)^2\ge\dfrac{9}{4}\)
(BĐT Netsbitt)
\(\Rightarrow P\ge\dfrac{3}{4}\)
b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)
Tương tự cho 2 cái kia rồi cộng lại
\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)
\(ab;bc;ca \rightarrow x;yz\)\(\Rightarrow gt\Leftrightarrow x^3+y^3+z^3=3xyz\)
Can you finish it ?
yes, i can. thanks