K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

Áp dụng tính chất dãy tỉ số = nhau ta có;

1/a+b+c=b+c-3+a+c-5+a+b+7/a+b+c

1/a+b+c=2(a+b+c)-1/a+b+c

2/a+b+c=2

a+b+c=1

27 tháng 1 2017

tôi ko hiểu cách trình bày của bạn

27 tháng 1 2017

lại đề dõ dàng nha , nhìn nhìn chẳng hiểu gì cả

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ bên trái khung soạn thảo)

12 tháng 12 2019

\(a ) Ta có : a / b = 2 và b / c = 3\)

\(\Rightarrow\)\(a = 2b \)\(và \)\(b = 3c\)

\(A = ( a + b ) / ( b + c ) \)

\(A = ( 2b + b ) / ( 3c + c )\)

\(A = 3b / 4c\)

\(A = 3 / 4 . b / c \)

\(A = 3 / 4 . 3 \)

\(A = 9 / 4\)

30 tháng 7 2019

Giúp mẹ vs

Ai nhanh mà k

Mà đi cần gấp thanks

30 tháng 7 2019

Mẹ chuyển thanh mình nha mk

 Sory

12 tháng 2 2019

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)

Nếu \(a+b+ c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow a+b=2c\)

      \(b+ c=2a\)

       \(c+a=2b\)

\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)

12 tháng 2 2019

chumia sư phụ cứu zới !!!