Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{1+a}=2-\frac{1}{1+b}-\frac{1}{1+c}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
Tương tự:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)
=> \(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
=> \(abc\le\frac{1}{8}\)
"=" xảy ra <=> a = b = c = 1/2
Vậy max P = abc = 1/8 đạt tại a = b = c =1/2
\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)
\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)
\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)
\(P=\frac{a+b}{2a-b}+\frac{b+c}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{\frac{2ac}{a+c}+c}{2c-\frac{2ac}{a+c}}=\frac{a+3c}{2a}+\frac{3a+c}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)
Dấu "=" xảy ra khi \(a=b=c\)
https://www.facebook.com/OnThiDaiHocKhoiA/posts/508217699295984
Ta có: \(\left(a-1\right)^3=a^3-3a^2+3a-1\)
\(=a\left(a^2-3a+3\right)-1=a\left(a-\frac{3}{2}\right)^2+\frac{3}{4}a-1\ge\frac{3}{4}a-1\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\left(b-1\right)^3\ge\frac{3}{4}b-1;\left(c-1\right)^3\ge\frac{3}{4}c-1\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\frac{3}{4}\left(a+b+c\right)-3=\frac{3}{4}\cdot3-3=-\frac{3}{4}\)
+ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\) \(\Rightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
Dấu "=" \(\Leftrightarrow b=c\)
+ Tương tự : \(\frac{1}{1+b}\ge2\sqrt{\frac{ca}{\left(1+c\right)\left(1+a\right)}}\) Dấu "=" \(\Leftrightarrow c=a\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\) Dấu "=" \(\Leftrightarrow a=b\)
Do đó \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\frac{1}{8}\) Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{2}\)