Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Bu-nhi-a, ta có
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ab}+\sqrt{ac}\)
=>\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự, rồi + vào, ta có
A\(\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (ĐPCM)
dấu =xảy ra <=>a=b=c>o
^_^
điện thoại cùi nên chụp hơi mờ, đề này còn thiếu a,,bc>0
Không ai thảo luận câu này sao. T khởi động trước nhá.
Ta có: \(\cos\left(\dfrac{A-B}{2}\right)=\dfrac{\cos\left(\dfrac{A-B}{2}\right).\cos\left(\dfrac{A+B}{2}\right)}{\sin\dfrac{C}{2}}\)
\(=\dfrac{\cos A+\cos B}{2\sqrt{\dfrac{1-\cos C}{2}}}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{a^2+c^2-b^2}{2ca}}{2\sqrt{\dfrac{1-\dfrac{a^2+b^2-c^2}{2ab}}{2}}}\)
\(=\dfrac{\dfrac{\left(a+b\right)\left(c^2-\left(a-b\right)^2\right)}{abc}}{2\sqrt{\dfrac{c^2-\left(a-b\right)^2}{ab}}}=\dfrac{\left(a+b\right)\sqrt{c^2-\left(a-b\right)^2}}{2c\sqrt{ab}}\)
Ta sẽ chứng minh: \(\dfrac{\left(a+b\right)\sqrt{c^2-\left(a-b\right)^2}}{2c\sqrt{ab}}\le\dfrac{a+b}{\sqrt{2\left(a^2+b^2\right)}}\)
\(\Leftrightarrow\dfrac{2abc^2}{c^2-\left(a-b\right)^2}\ge a^2+b^2\)
\(\Leftrightarrow2abc^2-\left(a^2+b^2\right)\left(c^2-\left(a-b\right)^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2-c^2\right)\ge0\) (đúng vì tam giác ABC nhọn)
\(\Rightarrow\cos\left(\dfrac{A-B}{2}\right)\le\dfrac{a+b}{\sqrt{2\left(a^2+b^2\right)}}\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\cos\left(\dfrac{B-C}{2}\right)\le\dfrac{b+c}{\sqrt{2\left(b^2+c^2\right)}}\left(2\right)\\\cos\left(\dfrac{C-A}{2}\right)\le\dfrac{c+a}{\sqrt{2\left(c^2+a^2\right)}}\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được ĐPCM.
Thảo luận mình là người thứ 2
Chẳng thấy đề có kết nối giữa hai đại lượng [(ABC);(a,b,c)]
gì cả --> thiếu mối liên lạc cần thiết -->đề chưa thực sự rõ rằng --->Đề có suy biến --->lời giải (nếu có) phải là lời giải biện luận theo đề--->chưa thể chấp nhận lời giải trên
Dễ chứng minh được:
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)
Do đó, ta có:
\(\sum\limits_{cyc}=\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\sum_{cyc}\dfrac{a}{a+\sqrt{ac}+\sqrt{ab}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
Vậy: BĐT đã được chứng minh. Đẳng thức xảy ra khi và chỉ khi a=b=c
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{a+\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{c}+\sqrt{b}}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1=VP\)