\(\left(\frac{a-b}{b-c}\right)^2+\left(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

..... ko biết đợi đứa khác đê

18 tháng 2 2017

C/m bằng biến đổi tương đương như sau

\(Σ\frac{a^2}{\left(b-c\right)^2}-2=\left(Σ\frac{a}{b-c}\right)^2-2Σ\frac{ab}{\left(b-c\right)\left(c-a\right)}-2\)

\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}-2\frac{Σ\left(a^2b-a^2c\right)}{╥\left(a-b\right)}-2\)

\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}+2-2\ge0\)

P/s: \(╥\) dùng thay cho ∏ nhé, tại olm đã ít kí hiệu lại ko cho paste nên dùng tạm

18 tháng 7 2016

Ta có ; \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\)

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}=\frac{1}{b-c}+\frac{1}{a-b}\)

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}=\frac{1}{c-a}+\frac{1}{b-c}\)

Cộng các vế lại với nhau được điều phải chứng minh.

18 tháng 7 2016

A , B , C khác nhau thì bạn làm sao có thể cho : A-C = B đc ?
 

30 tháng 8 2017

Ta có: 

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=-\left(\frac{b-c}{\left(a-b\right)\left(c-a\right)}+\frac{c-a}{\left(b-c\right)\left(a-b\right)}+\frac{a-b}{\left(c-a\right)\left(b-c\right)}\right)\)

\(=2.\frac{-a^2-b^2-c^2+ab+bc+ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=2.\frac{\left(a-b\right)\left(b-c\right)+\left(b-c\right)\left(c-a\right)+\left(c-a\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

14 tháng 7 2017

Câu hỏi của Hoàng Minh Nguyễn - Toán lớp 9 - Học toán với OnlineMath

5 tháng 11 2015

Nâng cao và phát triển toán 8 tập 1 bài 153

tick nha