Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gán giá trị: a = b = c = d = 1
Ta có, giá trị phải thỏa mãn điều kiện \(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow1^4+1^4+1^4+1^4=1+1+1+1\)
\(=4\) (thỏa mãn yêu cầu đề bài)
\(\RightarrowĐPCM\)
Ps: Làm xàm chút thôi! nhưng vẫn có thể đúng!
áp dụng bất đẳng thức a2+b2\(\ge\)2ab, dấu bằng xảy ra khi a=b
Ta có a4+b4\(\ge\)2a2b2,dấu bằng xảy ra khi a=b
c4+d4\(\ge\)2c2d2,dấu bằng xảy ra khi c=d
a2b2+c2d2\(\ge\)2abcd,dấu bằng xảy ra khi ab=cd
Vậy a4+b4+c4+d4\(\ge\)2a2b2+2c2d2=2(a2b2+c2d2)\(\ge\)2.2abcd=4abcd
Dấu = xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\)suy ra a=b=c=d suy ra a,b,c,d là 4 cạnh của 1 hình thoi
Áp dụng bất đẳng thức Cosi cho những số không âm, ta được:
\(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4\cdot b^4\cdot c^4\cdot d^4}=4abcd\)
Dấu '=' xảy ra khi a=b=c=d
hay tứ giác ABCD là hình thoi
a) \(ĐKXĐ:x\ne\pm3\)
\(A=\frac{5}{x+3}-\frac{2}{3-x}+\frac{3x^2-2x-9}{x^2-9}\)
\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x}{x+3}\)
b) Khi \(\left|x-2\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2-x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Thay x = 1 vào A, ta được :
\(A=\frac{-3}{1+3}=\frac{-3}{4}\)
Vậy khi \(\left|x-2\right|=1\Leftrightarrow A=-\frac{3}{4}\)
c) Để \(A\inℤ\)
\(\Leftrightarrow\frac{-3x}{x+3}\inℤ\)
\(\Leftrightarrow-3x⋮x+3\)
\(\Leftrightarrow-3\left(x+3\right)+9⋮x+3\)
\(\Leftrightarrow9⋮x+3\)
\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)
\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2\left(a^2b^2-2abcd+c^2d^2\right)=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)\left(a+b\right)=0\left(1\right)\\\left(c-d\right)\left(c+d\right)=0\left(2\right)\\ab-cd=0\left(3\right)\end{cases}}\)
Theo hai phương trình (1) và (2) ta được a=b và c=d( vì a,b,c,d là độ dài 4 cạnh của tứ giác lồi nên a+b và c+d >0 do đó a-b và c-d phải bằng 0)
Vì a=b và c=d nên thế vào phương trình (3) ta được\(a^2-c^2=0\Leftrightarrow\left(a-c\right)\left(a+c\right)\)Suy ra a=c
Vậy a=b=c=d hay abcd là hình thoi