K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

Áp dụng t/c DTSBN có:

(b+c+d)/a=(c+d+a)/a=(d+a+b)/c=(a+b+c)/d=(b+c+d+c+d+a+d+a+b+a+b+c)/(a+b+c+d)

                                                               =[3.(a+b+c+d)]/(a+b+c) =3(1)

Lại có: (b+c+d)/a=(c+d+a)/a=(d+a+b)/c=(a+b+c)/d=k(2)

Từ (1) và (2) có: k=3

8 tháng 1 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)

\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)

\(=\frac{3a+3b+3c+3d}{a+b+c+d}\)

\(=\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)

\(=3\)

Vậy k = 3

Vậy k = 3

Chúc bạn hok tốt !

12 tháng 2 2017

\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b+d}+1=\frac{b}{c+d+a}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(=\frac{a}{a+b+c+d}=\frac{b}{a+b+c+d}=\frac{c}{a+b+c+d}=\frac{d}{a+b+c+d}\)

\(\Rightarrow a=b=c=d\) Thay vào A ta được :

\(A=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

18 tháng 12 2015

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)

\(=\frac{3a+3b+3c+3d}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=k\)

Th1: 3(a + b + c + d) = 0 Mà a + b  + c + d khác 0 => Loại

Vậy k = 3 

4 tháng 8 2016

áp dụng tính chất dẫy tỉ số = nhau ta được 

b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d= b+c+d+c+d+a+a+b+d+a+b+c / a+b+c+d = 3 

do b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d = k 

suy ra k =3 .leuleuđơn giản vậy thôi

4 tháng 8 2016

k = 3  có đúng ko bạn 

5 tháng 8 2017

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c}{d}\)=\(\frac{b+c+d}{a}\)\(\frac{c+d+a}{b}\)\(\frac{d+a+b}{c}\)=\(\frac{a+b+c+b+c+d+c+d+a+d+a+b}{d+a+b+c}\)=\(\frac{3a+3b+3c+3d}{a+b+c+d}\)=\(\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)= 3

Vậy k=3

18 tháng 12 2016

\(\frac{b+c+d}{a}\)\(\frac{c+d+a}{b}\)\(\frac{d+a+b}{c}\)\(\frac{a+b+c}{d}\)

\(\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)

\(\frac{3a+3b+3c+3d}{a+b+c+d}\)

\(\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)= 3

vậy k = 3

14 tháng 1 2017

b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=k

áp dụng tc dãy tỉ số bằng nhau ta được:

b+c+d+c+d+a+d+a+b+a+b+c/a+b+c+d=k

=>3a+3b+3c+3d/a+b+c+d=k

=>3+k

=>k=3

Vậy k=3