K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)( luôn đúng )

Vậy ...

10 tháng 11 2019

Có nhiều cách biểu diễn:

VD

\(VT-VP=\frac{\left(a-b-c\right)^2+\left(a-d-e\right)^2+\left(b-c\right)^2+\left(d-e\right)^2}{2}\) (còn rất nhiều ...)

17 tháng 4 2016

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

<=>(a2-4ab+4b2)+(a2-4ac+4c2)+(a2-4ad+4d2)+(a2-4ae+e2)\(\ge\)0

<=>(a-2b)2+(a-2c)2+(a-2d)2+(a-2e)2\(\ge\)0 (luôn đúng)

=>dpcm

17 tháng 4 2016

nhân 2 vế cho 4 chuyển qua lại rồi dùng HĐT bạn ạ

6 tháng 10 2020

Xét hiệu:

\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)

\(=a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\)

\(=\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\)

\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\)

Do \(\left(\frac{a}{2}-b\right)^2\ge0\forall a,b;\left(\frac{a}{2}-c\right)^2\ge0\forall a,c\);\(\left(\frac{a}{2}-d\right)^2\ge0\forall a,d;\left(\frac{a}{2}-e\right)^2\ge0\forall a,e\)Do đó:

\(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

Dấu"="xảy ra khi \(b=c=d=e=\frac{a}{2}\)

6 tháng 10 2020

ô kê :))

a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae

Nhân 4 vào từng vế ta được

<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0

<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ad + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0

<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )

Vậy bđt được chứng minh

Dấu "=" xảy ra <=> b = c = d = e = a/2

17 tháng 3 2019

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae-4e^2\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)

BĐT trên đúng, mà các phép biến đổi là tương đương

\(\RightarrowĐPCM\)

Dấu "=" xảy ra khi a = 2b = 2c = 2d = 2e

17 tháng 3 2019

Bất đẳng thức đã cho tương đương với:
\[{a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a\left( {b + c + d + e} \right) \ge 0\]
\[ \Leftrightarrow {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2} \ge 0\]
Xét tam thức bậc hai: $f\left( a \right) = {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2}$

Ta có: $\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)$

Theo bất đẳng thức BCS, ta có: \[{\left( {b + c + d + e} \right)^2} \le \left( {1 + 1 + 1 + 1} \right)\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) = 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)\]
Suy ra: \[\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) \le 0 \Rightarrow f\left( a \right) \ge 0,\,\,\forall a \in \mathbb{R} \]
Từ đó ta có đpcm.

25 tháng 9 2020

Đề thiếu rồi nhé: \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

Quá ez:))

Ta có: \(a^2+b^2+c^2+d^2+e^2\)

\(=\left(\frac{a^2}{4}+b^2\right)+\left(\frac{a^2}{4}+c^2\right)+\left(\frac{a^2}{4}+d^2\right)+\left(\frac{a^2}{4}+e^2\right)\)

\(\ge2\sqrt{\frac{a^2}{4}\cdot b^2}+2\sqrt{\frac{a^2}{4}\cdot c^2}+2\sqrt{\frac{a^2}{4}\cdot d^2}+2\sqrt{\frac{a^2}{4}\cdot e^2}\)

\(=ab+ac+ad+ae=a\left(b+c+d+e\right)\)

Dấu "=" xảy ra khi: \(\frac{a}{2}=b=c=d=e\)

25 tháng 9 2020

Sửa đề a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae

Nhân 4 vào từng vế

<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0

<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ac + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0

<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )

Vậy bđt được chứng minh

Dấu "=" xảy ra <=> \(b=c=d=e=\frac{a}{2}\)

9 tháng 3 2016

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)  \(\left(1\right)\)

\(\Leftrightarrow\)  \(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)

\(\Leftrightarrow\)  \(a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)

\(\Leftrightarrow\)  \(\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)

\(\Leftrightarrow\)  \(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)  với mọi  \(a,\)  \(b,\)  \(c,\)  \(d,\)  \(e\in R\)  \(\left(2\right)\)

Bất đẳng thức  \(\left(2\right)\)  đúng, mà các phép biến đổi trên tương đương nên bất đẳng thức  \(\left(1\right)\)  được chứng minh.

Xảy ra đẳng thức trên khi và chỉ khi   \(b=c=d=e=\frac{a}{2}\), tức  \(a=2b=2c=2d=2e\)

10 tháng 9 2018

\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)

\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)

\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)

\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)

21 tháng 10 2018

Áp dụng bđt AM-GM:

\(\frac{a^2}{4}+b^2\ge ab\)

\(\frac{a^2}{4}+c^2\ge ac\)

\(\frac{a^2}{4}+d^2\ge ad\)

\(\frac{a^2}{4}+e^2\ge ae\)

Cộng theo vế: \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\("="\Leftrightarrow\frac{a}{2}=b=c=d=e\)

21 tháng 10 2018

   

       \(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)       

\(=\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\)

\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\forall a,b,c,d,e\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)

11 tháng 4 2017

d) \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)

<=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\dfrac{a^2+2ab+b^2}{4}\)

<=> 4(a2 + b2 ) \(\ge\) 2 ( a2 + 2ab + b2 )

<=> 4a2 + 4b2 \(\ge\) 2a2 + 4ab +2b2

<=> 4a2 + 4b2 - 2a2 - 4ab - 2b2 \(\ge\) 0

<=> 2a2 - 4ab + 2b2 \(\ge\) 0

<=> a2 -2ab +b2 \(\ge\) 0

<=> (a-b)2 \(\ge\) 0 ( luôn đúng)

=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)

Và dấu bằng xảy ra <=> a = b

e) Làm tương tự nhé! Có gì ko hiểu thì hỏi lại mk! Ok??

18 tháng 6 2019

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)

\(\Leftrightarrow\) \(4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)

\(\Leftrightarrow\) \(\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)\)...\(\ge0\)

\(\Leftrightarrow\) \(\left(a-2b\right)^2\)+\(\left(a-2c\right)^2\)...\(\ge\)0

nhớ tik nha