K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

a, Ta có: \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^2=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

b, thay vào giống a là đc

14 tháng 8 2017

a,Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a+2c}{3b+2d}\\\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-5c}{b-5d}\end{matrix}\right.\Rightarrow\dfrac{3a+2c}{3b+2d}=\dfrac{a-5c}{b-5d}\)

Vậy.........(đpcm)

b, Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\end{matrix}\right.\)

Vậy..............(đpcm)

Chúc bạn học tốt!!!

14 tháng 8 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a-2c}{3b-2d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}=\dfrac{5c}{5d}=\dfrac{a-5c}{b-5d}\)

\(\Rightarrow\dfrac{3a-2b}{3b-2c}=\dfrac{a-5c}{b-5d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

Có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)

Mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Nên \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

23 tháng 2 2020

1. a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó \(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(1\right)\)

\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{3a+b}=\frac{c}{3c+d}\)

c, 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó \(\frac{ab}{cd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)  (3)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

@@ Học tốt

Chiyuki Fujito

29 tháng 9 2019

Đặt \(\frac{a}{c}=\frac{b}{d}=k\)

\(\Rightarrow a=ck;b=dk\)

Khi đó : \(\frac{ac}{bd}=\frac{ckc}{dkd}=\frac{c^2}{d^2}\left(1\right)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}\left(2\right)\)

Từ (1) và  (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(\text{đpcm}\right)\)

29 tháng 9 2019
a/c=b/d=a^2/c^2=b^2/d^2 Theo tc dãy tỉ số = nhau,ta có: a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2 (1) a/c=b/d=a/c×a/c=b/d×a/c( nhân 2vế vs a/c) =a^2/c^2=a.b/c.d (2) Từ (1);(2)=>a.c/b.d=a^2+c^2/b^2+d^2 Mk chắc chắn dug.k cho mk
25 tháng 9 2019

a/b = c/d = k => a = bk; c = dk.

ac/bd = bkdk/bd = k^2.

a^2 + c^2/b^2 + d^2 = b^2.k^2 + d^2.k^2/ b^2 + d^2

= (b^2 + d^2).k^2/(b^2+d^2) = k^2.

Vậy ac/bd = a^2 + c^2/ b^2 + d^2

27 tháng 6 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)thì \(a=kb;c=kd\)

Ta có :\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\)    (1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}\)

\(=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right).k^2}{b^2+d^2}=k^2\)    (2)

Từ (1) và (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

30 tháng 9 2018

a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}.\) (*)

mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

Từ (*) => đpcm

30 tháng 9 2018

b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)

17 tháng 12 2015

ta có:

b^2=ac =>a/b=b/c  (1)

c^2=bd =>b/c=c/d  (2)

(1)(2)=>a/b=b/c=c/d

=>a^3/b^3=b^3/c^3=c^3/d^3=abc/bcd

=>(a^3+b^3+c^30)/(b^3+c^3+d^3)=a/d

Vay.......

Nhớ tick mk nha

24 tháng 6 2023

ta có:

b^2=ac =>a/b=b/c  (1)

c^2=bd =>b/c=c/d  (2)

(1)(2)=>a/b=b/c=c/d

=>a^3/b^3=b^3/c^3=c^3/d^3=abc/bcd

=>(a^3+b^3+c^3)/(b^3+c^3+d^3)=a/d

Vay dpcm