K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

\(4.\)

\(a.A=5-8x-x^2\)

\(=-\left(16+8x+x^2\right)+21\)

\(=-\left(4+x\right)^2+21\le21\)

\(A_{max}=21\)

Dấu '='xảy ra khi \(x=-4\)

\(b.B=5-x^2+2x-4y^2-4y\)

\(=-\left(1-2x+x^2\right)-\left(4+4y+4y^2\right)+10\)

\(=-\left(1-x\right)^2-\left(2+2y\right)^2+10\le10\)

\(B_{max}=10\)

Dấu '=' xảy ra khi \(x=1;y=-1\)

\(5.\)

\(a.\) Ta có:\(a^2+b^2+c^2=ab+bc+ca\)

              \(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

              \(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

              \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

              \(\Leftrightarrow a-b=0\Leftrightarrow a=b\left(1\right)\)

              hay\(b-c=0\Leftrightarrow b=c\left(2\right)\)

             hay\(c-a=0\Leftrightarrow c=a\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\left(3\right)\)suy ra:\(a=b=c\left(đpcm\right)\)

\(b.a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)

hay\(b+2=0\Leftrightarrow b=-2\)

hay\(2c-2=0\Leftrightarrow c=1\)

V...

^^

4 tháng 7 2019

a) \(A=5-8x-x^2\)

        \(=-\left(x^2+8x-5\right)\)

        \(=-\left(x^2+2.x.4+4^2-16-5\right)\)

        \(=-\left[\left(x+4\right)^2-21\right]\)

        \(=-\left(x+4\right)^2+21\le21\)

       Dấu "=" khi x + 4 = 0 => x = -4

       Vậy GTLN của A là 21 khi x = -4

b) \(B=5-x^2+2x-4y^2-4y\)

       \(=-\left(x^2-2x+4y^2+4y-5\right)\)

       \(=-\left[x^2-2x+1+\left(2y\right)^2+2.2y.1+1-7\right]\)

      \(=-\left[\left(x-1\right)^2+\left(2y+1\right)^2\right]+7\le7\)

    Dấu "=" khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

   Vậy GTLN của B là 7 khi x = 1 và y = -1/2

c) Theo đề: \(a^2+b^2+c^2=ab+bc+ca\)

           \(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

         \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

          \(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\)

         \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

          \(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)(ĐPCM)

d) \(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(\text{4c^2}-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)

   Vậy nghiệm phương trình: a = 1; b = -2; c = 1/2

Chúc bạn học tốt ^_^

      

4 tháng 7 2019

sao ko ai giúp nhỉ ;(

5 tháng 10 2019

Có ab + bc + ca = 0

=> 2ab + 2bc + 2ca = 0

Lại có a2 + b2 + c2 = 0             (1)        

=> a2 + 2ab + b2 + 2bc + c2 + 2ca = 0

=> (a + b + c)2 = 0

=> a + b + c = 0                        (2)

Từ (1) và (2) => a = b = c (đpcm)

5 tháng 10 2019

Ta có: \(\hept{\begin{cases}a^2+b^2+c^2=0\\ab+bc+ca=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2a^2+2b^2+2c^2=0\\2ab+2bc+2ca=0\end{cases}}\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\)

Do đó \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Bài làm :

 Bình phương hai vế của a + b + c = 0 ta được :

\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)   ( 1 )

Bình phương hai vế của ( 1 ) ta được :

\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)  ( vì a + b + c = 0 nên 2abc . 0 = 0 )

=> đpcm 

Phần còn lại tương tự bạn tự làm nhé

Học tốt

22 tháng 9 2020

Ta có :

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)( 1 )

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)( 2 )

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)( 3 )

Ta lại có : 

\(\left(ab+bc+ca\right)^2\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc.0\)

\(=a^2b^2+b^2c^2+c^2a^2\)( 4 )

Thay ( 4 ) vào ( 2 ) ta được :

\(a^4+b^4+c^4+2\left(ab+bc+ca\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)( 5 )

Từ ( 1 ) => \(ab+bc+ca=\frac{-a^2-b^2-c^2}{2}\)

\(\Rightarrow2\left(ab+bc+ca\right)^2=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)( 6 )

Từ ( 3 ) ; ( 5 ) và ( 6 ) => Đpcm

13 tháng 8 2015

ta co (a+b+c)2=a2+b2+c2+2ab-2bc-2ac

                     =a2+b2+[c2+2(ab-bc-ac)]

                     =a2+b2

30 tháng 12 2015

viet ra dai lam to cho ban goi y nay: ban nhan ca hai ve cua a/(b+c) + b/(a+c) + c/(a+b) = 1 cho a+b+c   xong ban se dc x+x^2/(y+z)+y+y^2/(z+x)+z+z^2/(x+y)=x+y+z chet quen to nham thanh x,y,z ban tu lam dc roi nhe

5 tháng 2 2016

a b

vì tổng của 3 gốc bằng 180

nên 180>0

 

vậy thôi

29 tháng 6 2015

Ta có

a^2 + b^2 +c^2 = ab + ac + bc

=> a^2 +b^2 +c^2 - ab - bc -ac = 0

=> 2(a^2 + b^2 +c^2 -ab-bc-ac) = 2.0 = 0

=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0

=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 -2ac + c^2  = 0

=> ( a-b)^2 + ( a-c)^2 + ( b-c)^2 = 0

Vì ba cái đều lớn hơn = 0 => = 0 khi cả ba caí = 0

a -b = 0   => a=b

a  - c =  0  a = c

 b - c = 0   b = c

=> a = b= c => ĐPCM hơi tắt tí

29 tháng 6 2015

 Ta có: a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0

<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0

<=>(a-b)2+(b-c)2+(a-c)2=0

=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c

=> a=b=c (đpcm)