\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}=\sqrt{2011}\)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

Đặt \(\left\{{}\begin{matrix}\sqrt{a^2+b^2}=x\\\sqrt{b^2+c^2}=y\\\sqrt{c^2+a^2}=z\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{x^2+z^2-y^2}{2}\\b^2=\dfrac{x^2+y^2-z^2}{2}\\c^2=\dfrac{y^2+z^2-x^2}{2}\\x+y+z=\sqrt{2011}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}y\\a+b\le\sqrt{2}x\\c+a\le\sqrt{2}z\end{matrix}\right.\)

\(VT=\dfrac{1}{2\sqrt{2}}\left(\dfrac{x^2+z^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}+\dfrac{y^2+z^2-x^2}{x}\right)\)

\(\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)}-\left(x+y+z\right)\right)\)

\(=\dfrac{1}{2\sqrt{2}}\left(x+y+z\right)=\dfrac{\sqrt{2011}}{2\sqrt{2}}=VP\)

Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR 2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\) Giải: Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy...
Đọc tiếp

Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR

2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)

Giải:

Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy sau:

\(\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\ge0\),

\(\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\),

\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge0\)

Các bđt trên đầu mang tính đối xứng giữa các biến nên k mất tính tổng quát ta có thể giả sử \(a\ge b\ge c\)

=> \(\dfrac{a^2-1}{a}\ge\dfrac{b^2-1}{b}\ge\dfrac{c^2-1}{c}\)

\(\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{c^2}}}\)

Áp dụng bđt Chebyshev có:

\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge\dfrac{1}{3}\left(\sum\dfrac{a^2-1}{a}\right)\left(\sum\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\right)\)

Theo gia thiết lại có: \(\sum\dfrac{a^2-1}{a}=\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)

nên ta có thể suy ra \(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge0\)

Vì vậy bđt đã cho ban đầu cũng đúng.

@Ace Legona

2
2 tháng 8 2017

Nice proof, nhưng đã quy đồng là phải thế này :v

\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)

\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)

2 tháng 8 2017

Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:

\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)

Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)

Áp dụng BĐT này ta có:

\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)

26 tháng 5 2018

Từ \(a^2+b^2+c^2=3\Rightarrow a+b+c\le3\)

Ta có: \(\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\)

\(\ge\sqrt{9\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\)

\(\ge\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)

Cần chứng minh \(\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\ge\dfrac{3\sqrt{13}}{2}\)

\(\Leftrightarrow9\left(\dfrac{9}{2t}\right)^2+t^2\ge\dfrac{117}{4}\left(t=a+b+c\le3\right)\)

\(\Leftrightarrow\dfrac{\left(t-3\right)\left(2t-9\right)\left(t+3\right)\left(2t+9\right)}{4t^2}\ge0\)*Đúng*

9 tháng 6 2018

B1:a)ĐK: \(x\ne 0;4;9\)

b)\(P=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\dfrac{1}{\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1+1}{\sqrt{x}+1}\right)\)

\(=\dfrac{x-9-x+4+x^{\dfrac{1}{2}}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x^{\dfrac{1}{2}}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+1}{x^{\dfrac{1}{2}}}\)

\(=\dfrac{1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{x^{\dfrac{1}{2}}}\)\(=\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}\)

c)Vì \(x^{\dfrac{1}{2}}+1>0\forall x\) nên

\(P< 0< =>x-2x^{\dfrac{1}{2}}< 0\)

\(\Leftrightarrow x^{\dfrac{1}{2}}\left(x^{\dfrac{1}{2}}-2\right)< 0\)

\(\Leftrightarrow0< x< 4\)

Vậy 0<x<4 thì P<0

d)tA CÓ: \(\dfrac{1}{P}=\dfrac{x-2x^{\dfrac{1}{2}}}{x^{\dfrac{1}{2}}+1}=\dfrac{x-2x^{\dfrac{1}{2}}+1-1}{x^{\dfrac{1}{2}}+1}=\dfrac{\left(x^{\dfrac{1}{2}}-1\right)^2-1}{x^{\dfrac{1}{2}}+1}\ge-1\)

"=" khi x=1

B2:

a)\(A=x^2-2xy+y^2+4x-4y-5\)

\(=\left(x-y\right)^2+4\left(x-y\right)-5\)

\(=\left(x-y\right)^2-1+4\left(x-y\right)-4\)

\(=\left(x-y+1\right)\left(x-y-1\right)+4\left(x-y-1\right)\)

\(=\left(x-y+5\right)\left(x-y-1\right)\)

b)\(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^3+x^2\right)+2\left(x^2+x\right)+1\)

\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(=\left(x^2+x+1\right)^2\ge0\forall x\)

Vậy MinP=0

c)\(Q=x^6+2x^5+2x^4+2x^3+2x^2+2x+1\)

\(=\left(x^2+x-1\right)\left(x^4+x^3+2x^2+x+3\right)+4\)

\(=\left(1-1\right)\left(x^4+x^3+2x^2+x+3\right)+4\)

\(=0\left(x^4+x^3+2x^2+x+3\right)+4=4\)

Vậy x^2+x=1 thì Q=4

B3:a)\(2xy+x+y=83\)

\(\Leftrightarrow x\left(2y+1\right)+\dfrac{1}{2}\left(2y+1\right)=\dfrac{167}{2}\)

\(\Leftrightarrow2x\left(2y+1\right)+1\left(2y+1\right)=167\)

\(\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=167\)

\(Ư\left(167\right)=\left\{\pm1;\pm167\right\}\)

\(\Leftrightarrow\left(x;y\right)=\left(-84;-1\right);\left(-1;-84\right);\left(0;83\right);\left(83;0\right)\)

Vậy...

b)\(y^2+2xy-3x-2=0\)

\(\Leftrightarrow x^2+y^2+2xy-x^2-3x-2=0\)

\(\Leftrightarrow\left(x+y\right)^2=x^2+3x+2\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

\(x;y\in Z\) nên VT là số chính phương VP là tích 2 số nguyên liên tiếp

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)

Vậy...

B5:\(B=\dfrac{x^2+x+1}{x^2-x+1}\)

\(\Leftrightarrow x^2\left(B-1\right)+x\left(-B-1\right)+\left(B-1\right)=0\)

\(\Delta=\left(-B-1\right)^2-4\left(B-1\right)\left(B-1\right)\)

\(=-\left(B-3\right)\left(3B-1\right)\)

pt có nghiệm khi \(\Delta\ge0\)

\(\Leftrightarrow\left(B-3\right)\left(3B-1\right)\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}B-3\le0\\3B-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}B\le3\\B\ge\dfrac{1}{3}\end{matrix}\right.\)

Min B=1/3 khi x=-1; Max B=3 khi x=1

4 tháng 12 2017

Đặt vế trái là T, ta có:

\(\dfrac{a}{\sqrt{b+1}}=\dfrac{a\sqrt{2}}{\sqrt{2}.\sqrt{b+1}}\ge\dfrac{a\sqrt{2}}{\dfrac{b+1+2}{2}}=\dfrac{a.2\sqrt{2}}{b+3}\)

Tương tự: \(\dfrac{b}{\sqrt{c+1}}\ge\dfrac{b.2\sqrt{2}}{c+3}\)

\(\dfrac{c}{\sqrt{a+1}}\ge\dfrac{c.2\sqrt{2}}{a+3}\)

Cộng vế theo vế các BĐT vừa chứng minh, ta được

\(T\ge2\sqrt{2}\left(\dfrac{a}{b+3}+\dfrac{b}{c+3}+\dfrac{c}{a+3}\right)=2\sqrt{2}\left(\dfrac{a^2}{ab+3a}+\dfrac{b^2}{bc+3b}+\dfrac{c^2}{ac+3c}\right)\)

\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+3\left(a+b+c\right)}\)

\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{\dfrac{\left(a+b+c\right)^2}{3}+3\left(a+b+c\right)}\)

\(T\ge2\sqrt{2}.\dfrac{3^2}{\dfrac{3^2}{3}+9}=\dfrac{3\sqrt{2}}{2}\)(đpcm)

Đẳng thức xảy ra khi a=b=c=1

4 tháng 12 2017

b) Đặt vế trái là N,ta có:

\(\sum\sqrt{\dfrac{a^3}{b+3}}=\sum\sqrt{\dfrac{a^4}{ab+3}}=\sum\dfrac{a^2}{\sqrt{ab+3}}=\sum\dfrac{2a^2}{\sqrt{4a\left(b+3\right)}}\ge\sum\dfrac{2a^2}{\dfrac{4a+b+3}{2}}=\sum\dfrac{4a^2}{4a+b+3}\)

\(\sum\dfrac{4a^2}{4a+b+3}\ge\dfrac{\left(2a+2b+2c\right)^2}{4a+b+3+4b+c+3+4c+a+3}=\dfrac{3}{2}\)(đpcm)

Đẳng thức xảy ra khi a=b=c=1

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 1:

Ta có:

\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)

\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=3-2M(*)\)

Áp dụng BĐT Cauchy ta có:

\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)

\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Tiếp tục áp dụng BĐT Cauchy:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)

\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)

(đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 2:

Áp dụng BĐT Cauchy -Schwarz:

\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)

hay:

\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)

Mặt khác, theo BĐT Cauchy ta dễ thấy:

\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

8 tháng 1 2018

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^2+3}{8}\ge\dfrac{3a^2}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^2+3}{8}\ge\dfrac{3b^2}{2};\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{a^2+3}{8}\ge\dfrac{3c^2}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(2P+\dfrac{a^2+b^2+c^2+9}{8}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{2}\)

\(\Leftrightarrow P\ge\dfrac{\dfrac{3\left(a^2+b^2+c^2\right)}{2}-\dfrac{a^2+b^2+c^2+9}{8}}{2}=\dfrac{3}{2}\)

13 tháng 6 2018

@DƯƠNG PHAN KHÁNH DƯƠNG

\(a;b;c\ge0\)thỏa mãn \(ab+bc+ca=1\). CMR \(\dfrac{1}{2a+2bc+1}+\dfrac{1}{2b+2ca+1}+\dfrac{1}{2c+2ab+1}\ge1\)

Đảm bảo an ninh :))

3 tháng 2 2018

Ta luôn có \(\left(\dfrac{1}{\sqrt{a}}-\dfrac{1}{\sqrt{b}}\right)^2\ge0\forall a;b\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\)

\(\Leftrightarrow2\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{2}{\sqrt{ab}}+\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Leftrightarrow\dfrac{2\left(a+b\right)}{ab}\ge\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)^2\)

\(\Leftrightarrow\sqrt{\dfrac{2\left(a+b\right)}{ab}}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(\sqrt{2}\left(\sqrt{\dfrac{a+b}{ab}}+\sqrt{\dfrac{b+c}{bc}}+\sqrt{\dfrac{a+c}{ac}}\right)\ge2\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\right)\)

\(\Leftrightarrow\sqrt{\dfrac{a+b}{ab}}+\sqrt{\dfrac{b+c}{bc}}+\sqrt{\dfrac{a+c}{ac}}\ge\sqrt{\dfrac{2}{a}}+\sqrt{\dfrac{2}{b}}+\sqrt{\dfrac{2}{c}}\)

\("="\Leftrightarrow a=b=c\)

25 tháng 10 2017

\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{c^2+\dfrac{1}{c^2}}\)

\(\Leftrightarrow\sqrt{\dfrac{97}{4}}P=\sqrt{4+\dfrac{81}{4}}\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{c^2+\dfrac{1}{c^2}}\)

\(\ge\left(2a+\dfrac{9}{2a}\right)+\left(2b+\dfrac{9}{2b}\right)+\left(2c+\dfrac{9}{2c}\right)\)

\(=2\left(a+b+c\right)+\dfrac{9}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\ge4+\dfrac{9}{2}.\dfrac{9}{a+b+c}=4+\dfrac{81}{4}=\dfrac{97}{4}\)

\(\Rightarrow P\ge\sqrt{\dfrac{97}{4}}\)

PS: Lần sau chép đề cẩn thận nhé bạn.

AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Từng sau em hạn chế đăng nhiều bài cùng một lúc như thế này nhé. 

Bài 1:

Ta có: \(a+\frac{4}{(a-b)(b+1)^2}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\)

Áp dụng BĐT AM-GM cho các số không âm ta có:

\((a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}\geq 4\sqrt[4]{\frac{4(a-b)(b+1)^2}{4(a-b)(b+1)^2}}=4\)

\(\Rightarrow a+\frac{4}{(a-b)(b+1)^2}=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\geq 4-1\)

\(\Leftrightarrow a+\frac{4}{(a-b)(b+1)^2}\geq 3\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a-b=\frac{b+1}{2}=\frac{4}{(a-b)(b+1)^2}\)

\(\Leftrightarrow a=2; b=1\)

AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Bài 2:

Đặt \(\left(\frac{a}{b}, \frac{b}{c}, \frac{c}{a}\right)\mapsto (x,y,z)\Rightarrow xyz=1\)

BĐT cần chứng minh tương đương với:

\(x^2+y^2+z^2\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x^2+y^2+z^2\geq \frac{xy+yz+xz}{xyz}=xy+yz+xz(*)\)

Áp dụng BĐT AM-GM:

\(x^2+y^2\geq 2\sqrt{x^2y^2}=2xy\)

\(y^2+z^2\geq 2\sqrt{y^2z^2}=2yz\)

\(z^2+x^2\geq 2\sqrt{z^2x^2}=2zx\)

Cộng theo vế: \(\Rightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)

\(\Leftrightarrow x^2+y^2+z^2\geq xy+yz+xz\)

Do đó (*) đúng, ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)

Bài 3:

Ta có: \(\text{VT}=(\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}})+(\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}})\)

Áp dụng BĐT Bunhiacopxky:

\((\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}})(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq (\sqrt{b}+\sqrt{c}+\sqrt{a})^2\)

\(\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}(1)\)

Áp dụng BĐT AM-GM:

\(\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}\geq 3\sqrt[3]{\frac{abc}{\sqrt{abc}}}=3(2)\) do $abc=1$

Từ \((1); (2)\Rightarrow \text{VT}\geq \sqrt{a}+\sqrt{b}+\sqrt{c}+3\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)