K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

Ta có: 

Theo bất đẳng thức Cô - si, ta có: \(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\le\frac{a+b+a+c}{2}+\frac{b+c}{2}=1\)

\(\Rightarrow\sqrt{a}\left(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\right)\le\sqrt{a}\)hay \(\sqrt{a^2+abc}+\sqrt{abc}\le\sqrt{a}\)

Tương tự ta có: \(\sqrt{b^2+abc}+\sqrt{abc}\le\sqrt{b}\);\(\sqrt{c^2+abc}+\sqrt{abc}\le\sqrt{c}\)

Mà \(abc\le\left(\frac{a+b+c}{3}\right)^3=\frac{1}{27}\Rightarrow\sqrt{abc}\le\frac{1}{3\sqrt{3}}\)

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\le3\left(a+b+c\right)=3\)\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

19 tháng 4 2020

a=b=c=1/3

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

5 tháng 2 2020

Giả sử \(c=min\left\{a,b,c\right\}\Rightarrow1=a^2+b^2+c^2+2abc\ge2c^3+3c^2\Rightarrow c\le\frac{1}{2}\)

Chọn t > 0 thỏa mãn: \(\hept{\begin{cases}2t^2+c^2+2t^2c=1\left(1\right)\\2t^2+c^2+2t^2c=a^2+b^2+c^2+2abc\left(2\right)\end{cases}}\) (từ (1) ta mới có (2):v)

(2) \(\Rightarrow2c\left(t^2-ab\right)=a^2+b^2-2t^2\).

Ta thấy rằng, nếu\(t^2< ab\) thì:\(2t^2>a^2+b^2\ge2ab\Rightarrow t^2>ab\) (mâu thuẫn).

Vì vậy: \(t^2\ge ab\Rightarrow a^2+b^2\ge2t^2\). Bây giờ đặt P = f(a;b;c)

Xét: \(f\left(a;b;c\right)-f\left(t;t;c\right)=\left(c-1\right)\left(t^2-ab\right)+c\left(a+b-2t\right)\)

\(=\left(c-1\right)\left(t^2-ab\right)+\frac{c\left(a^2+b^2-2t^2\right)+2c\left(ab-t^2\right)}{a+b+2t}\)\(=\left(c-1\right)\left(t^2-ab\right)+\frac{2c^2\left(t^2-ab\right)-2c\left(t^2-ab\right)}{a+b+2t}\)

\(=\left(c-1\right)\left(t^2-ab\right)\left(1+\frac{2c}{a+b+2t}\right)\le0\)

Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=f\left(t;t;1-2t^2\right)\).

\(=\frac{1}{8}\left(2c-1\right)^2\left[\left(2c-1\right)^2-6\right]+\frac{5}{8}\le\frac{5}{8}\)

Cách rất dài và hại não, tối rồi em lười check lại quá:((

21 tháng 10 2017

Từ gt \(\Rightarrow\frac{1}{a+b+1}=2-\frac{1}{b+c+1}-\frac{1}{c+a+1}=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\)

\(\ge2\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\text{ }\left(1\right)\) (bđt Cauchy)

Tương tự \(\hept{\begin{cases}\frac{1}{b+c+1}\ge2\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b+1\right)\left(a+c+1\right)}}\text{ }\left(2\right)\\\frac{1}{c+a+1}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\text{ }\left(3\right)\end{cases}}\)

Từ (1);(2);(3) \(\Rightarrow\frac{1}{a+b+1}.\frac{1}{b+c+1}.\frac{1}{c+a+1}\ge8\sqrt{\frac{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}{\left(a+b+1\right)^2\left(b+c+1\right)^2\left(c+a+1\right)^2}}\)

\(\Leftrightarrow\frac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\ge8.\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)

\(\Leftrightarrow1\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)Hay \(M\le\frac{1}{8}\) 

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{4}\)

2 tháng 3 2018

\(P=\frac{a^2}{a^3+abc}+\frac{b^2}{b^3+abc}+\frac{c^2}{c^3+abc}.\) " nhân cả tử cả mẫu cho a ,   b ,  c lần lượt

\(\frac{a^2}{a^3+abc}\le\frac{1}{4}\left(\frac{a^2}{a^3}+\frac{a^2}{abc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{a}{bc}\right)\left(cosishaw\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)

từ đề bài ta suy ra

\(bc=\frac{a^2+B^2+c^2}{a};ac=\frac{a^2+B^2+c^2}{b};ab=\frac{a^2+b^2+c^2}{c}.\)

\(\frac{a}{bc}=\frac{a}{\frac{a^2+B^2+c^2}{a}}=\frac{a^2}{a^2+B^2+c^2}\)

\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)

từ đề bài suy ra tiếp 

\(a=\frac{a^2+b^2+c^2}{bc};\frac{1}{a}=\frac{1}{\frac{a^2+b^2+c^2}{bc}}=\frac{bc}{a^2+B^2+c^2}\) " tương tự với các số hạng 

suy ra 

\(P\le\frac{1}{4}\left(\frac{bc+ac+Ab}{a^2+b^2+c^2}+1\right)\)

\(bc+ac+ab\le a^2+B^2+c^2\left(cosi\right)\)

\(P\le\frac{1}{4}\left(1+1\right)=\frac{1}{2}\)

max của P là 1/2

dấu = xảy ra khi a=b=c=3

thử thay vào ta được

\(\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}=\frac{a}{2a^2}+\frac{a}{2a^2}+\frac{a}{2a^2}=\frac{3}{2a}=\frac{3}{2.3}=\frac{1}{2}\) " đúng "

2 tháng 3 2018

sửa lại cái đề bài thành  \(a^2+b^2+c^2=abc\)  đi

không bọn não chó nó tích sai cho tao đấy dcmmm 

bọn ngu học :)

27 tháng 5 2017

Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a^3-b^3\right)\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)

\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)

\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left[ab\left(a+b\right)+1\right]}\)

\(=\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{bc}{b^5+c^5+bc}\ge\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\ge\frac{b}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có: 

\(P\ge\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Đẳng thức xảy ra khi \(a=b=c=1\)

30 tháng 8 2018

Từ  \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a^3-b^3\right)\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)

\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)

\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left[ab\left(a+b\right)+1\right]}\)

\(=\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{bc}{b^5+c^5+bc}\ge\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\ge\frac{b}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\ge\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\) 

Đẳng thức xảy ra khi \(a=b=c=1\)

1 tháng 1 2018

Áp dụng bđt bu nhi a, ta có 

\(P^2\le3\left(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\right)\)

Áp dụng bđt cô si, ta có 

\(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

tương tự với mấy cái kia =>\(P^2\le\frac{3}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+a}+\frac{1}{ca+a+1}\right)\)

mà với abc =1, thì bạn sẽ chứng minh được \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)

phân thức thứ 1 để nguyê, phân thức thứ 2 nhân với ab, phân thức thứ 3 nhân với b, rồi chỗ napf có abc thì thay abc=1

thì bạn sẽ chứng minh được cái kia=1 

=>\(P\le\sqrt{\frac{3}{2}}\)

dâu = xảy ra <=>a=b=c=1

4 tháng 7 2020

Dễ thấy theo AM - GM :

\(\frac{1}{\sqrt{a^2+2b^2+3}}=\frac{1}{\sqrt{\left(a^2+b\right)+\left(b^2+1\right)+2}}\le\frac{1}{\sqrt{2ab+2b+2}}\)

\(\le\frac{\sqrt{6}}{4}\left(\frac{1}{ab+b+1}+\frac{1}{3}\right)\)

Tương tự:

\(\frac{1}{\sqrt{b^2+2c^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{bc+c+1}+\frac{1}{3}\right);\frac{1}{\sqrt{c^2+2a^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{ca+a^2+1}+\frac{1}{3}\right)\)

Cộng lại ta sẽ có đpcm

Vì dễ thấy \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\) với abc=1