Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2=\dfrac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge\dfrac{1}{2}.2xy\left(x^2+y^2\right)=xy\left(x^2+y^2\right)\)
Áp dụng:
\(P\le\dfrac{a}{a+bc\left(b^2+c^2\right)}+\dfrac{b}{b+ca\left(c^2+a^2\right)}+\dfrac{c}{c+ab\left(a^2+b^2\right)}\)
\(P\le\dfrac{a^2}{a^2+abc\left(b^2+c^2\right)}+\dfrac{b^2}{b^2+abc\left(c^2+a^2\right)}+\dfrac{c^2}{c^2+abc\left(a^2+b^2\right)}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(ab+bc+ca=abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Đặt vế trái của BĐT cần chứng minh là P
Ta có:
\(\dfrac{1}{a+2b+3c}=\dfrac{1}{a+b+b+c+c+c}\le\dfrac{1}{6^2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}\right)\)
\(\Rightarrow\dfrac{1}{a+2b+3c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\right)\)
Tương tự:
\(\dfrac{1}{b+2c+3a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{3}{a}\right)\) ; \(\dfrac{1}{c+2a+3b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{2}{a}+\dfrac{3}{b}\right)\)
Cộng vế:
\(P\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
C/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\) (*)
Thật vậy , (*) \(\Leftrightarrow\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(a+2\right)\left(c+2\right)=\left(a+2\right)\left(b+2\right)\left(c+2\right)\)
\(\Leftrightarrow ab+bc+ac+4\left(a+b+c\right)+12=abc+2\left(ab+bc+ac\right)+4\left(a+b+c\right)+8\)
\(\Leftrightarrow ab+bc+ac+abc=4\) (Đ)
=> (*) đúng ( đpcm )
Bài toán cơ bản:
\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Bunhiacopxki:
\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Ta có:P=(\(\frac{3a}{b+c}\)\(\frac{3a}{b+c}\)+3)+(\(\frac{4b}{a+c}\)+4)+(\(\frac{5c}{a+b}\)+5)-12
P=(a+b+c)(\(\frac{3}{b+c}\)+\(\frac{4}{c+a}\)+\(\frac{5}{a+b}\))-12
Áp dụng BĐT Bunhiacopxki
P=\(\frac{1}{2}\)((b+c)+(c+a)+(a+b))(\(\frac{3}{b+c}\)+\(\frac{4}{c+a}\)+\(\frac{5}{a+b}\))-12\(\ge\)\(\frac{\left(\sqrt{3}+2+\sqrt{5}\right)^2}{2}\)-12
Dấu''='' xảy ra \(\Leftrightarrow\)\(\frac{b+c}{\sqrt{3}}\)=\(\frac{c+a}{2}\)=\(\frac{a+b}{\sqrt{5}}\)
Ta có \(\left(a+b\right)\left(a+c\right)=8\)\(\Leftrightarrow a^2+ab+bc+ca=8\Leftrightarrow a\left(a+b+c\right)+bc=8\)
Mặt khác vì \(a,b,c>0\) nên ta có thể lấy căn bậc hai của C: \(C=abc\left(a+b+c\right)\Leftrightarrow\sqrt{C}=\sqrt{abc\left(a+b+c\right)}\)
\(=\sqrt{a\left(a+b+c\right).bc}\)
Áp dụng BĐT Cô-si cho hai số dương \(a\left(a+b+c\right)\)và \(bc\), ta có:
\(\sqrt{C}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=\frac{8}{2}=4\)(vì \(a\left(a+b+c\right)+bc=8\left(cmt\right)\))
\(\Leftrightarrow\sqrt{C}\le4\)\(\Leftrightarrow C\le16\)
Dấu "=" xảy ra khi \(a\left(a+b+c\right)=bc\)\(\Leftrightarrow a\left(a+b+c\right)-bc=0\)\(\Leftrightarrow a\left(a+b+c\right)+bc-2bc=0\)
\(\Leftrightarrow8-2bc=0\)\(\Leftrightarrow2bc=8\)\(\Leftrightarrow bc=4\)
Như vậy với \(a,b,c>0\) và \(\left(a+b\right)\left(a+c\right)=8\)thì GTLN của C là 16 khi \(bc=4\)
Em lớp 9, nếu bài làm có gì sai thì mong chị thông cảm ạ.