Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết:\(ab+bc+ca=3\Rightarrow\left(ab+bc+ca\right)^2=9\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=9\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=9-2abc\left(a+b+c\right)\)
Ta có:\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ca}+\frac{c}{2c^2+ab}\)\(=\frac{1}{\frac{2a^2+bc}{a}}+\frac{1}{\frac{2b^2+ca}{b}}+\frac{1}{\frac{2c^2+ab}{c}}\)
\(\ge\frac{\left(1+1+1\right)^2}{2a+\frac{bc}{a}+2b+\frac{ca}{b}+2c+\frac{ab}{c}}=\frac{9}{2a+2b+2c+\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}}\)
\(=\frac{9}{2a+2b+2c+\frac{b^2c^2+c^2a^2+a^2b^2}{abc}}=\frac{9}{2a+2b+2c+\frac{9-2abc\left(a+b+c\right)}{abc}}\)
\(=\frac{9}{2a+2b+2c+\frac{9}{abc}-2\left(a+b+c\right)}=\frac{9}{\frac{9}{abc}}=abc\)
Dấu "=" xảy ra khi
\(\frac{2a^2+bc}{a}=\frac{2b^2+ca}{b}=\frac{2c^2+ab}{c}=\frac{2a^2+bc-2b^2-ca}{a-b}=\frac{2\left(a-b\right)\left(a+b\right)-c\left(a-b\right)}{a-b}\)
\(=2\left(a+b\right)-c\).Tương tự ta có:\(2\left(a+b\right)-c=2\left(b+c\right)-a=2\left(c+a\right)-b\)
\(\Leftrightarrow a+b=b+c=c+a\)
\(\Leftrightarrow a=b=c\)
a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)
Ta cần chứng minh
\(a+b+c\ge ab+bc+ca\)
do \(x^2+y^2+z^2\ge xy+yz+zx\)
đặt \(a=\dfrac{2y}{x+z};b=\dfrac{2z}{y+x};c=\dfrac{2x}{z+y}\)
\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{x}{y+z}\ge2\left(\dfrac{xy}{\left(x+z\right)\left(y+z\right)}+\dfrac{yz}{\left(x+z\right)\left(x+y\right)}+\dfrac{zx}{\left(x+y\right)\left(y+z\right)}\right)\)
\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)
dấu ''='' khi \(a=b=c=1\) hoặc \(a=b=2,c=1\)
Bài này mình gặp rất nhiều khó khăn khi biến đổi, và vì biểu thức quá dài nên mình phải dùng ký hiệu \(\Sigma_{sym}\), có thể sẽ gặp phải những sai sót-> sai cả bài, do đó bài làm bên dưới chỉ nêu hướng làm thôi (quy đồng).
Nhân hai vế của BĐT cho \(2\left(ab+bc+ca\right)\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\) BĐT cần chứng minh tương đương:
\(\Leftrightarrow\)\(3\Sigma_{sym}a^3b^3c+\Sigma_{sym}ab^4c^2\ge3\Sigma_{sym}a^5bc+\Sigma_{sym}a^4b^3\)
\(\Leftrightarrow3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)+\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\)
Do \(3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)\ge0\) theo định lí Muirhead.
Do đó ta sẽ chứng minh: \(\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\). Và chịu:(
Không mất tính tổng quát, ta giả sử c là số nhỏ nhất.
Đặt \(f\left(a;b;c\right)=VP-VT\) và \(t=\frac{a+b}{2}\)
Trước hết ta chứng minh \(f\left(a;b;c\right)\ge f\left(t;t;c\right)\).
Xét hiệu hai vế và nó tương đương ta thấy nó \(\ge0\) do giả sử:
Vậy ta chỉ cần chứng minh \(f\left(t;t;c\right)\ge0\Leftrightarrow\frac{\left(c-t\right)^2\left(3c^2+3ct+2t^2\right)}{2t\left(c+t\right)\left(2c+t\right)\left(c^2+t^2\right)}\ge0\) (đúng)
Vậy ta có đpcm.
P/s: Lần sau cho đề đẹp đẹp tí, kiểu này quy đồng mà không có máy tính thì cực chetme:(
bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/222370673956.html
Cho a,b,c>0 và a+b+c=1. CMR: \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
Ta có : a + bc = a ( a + b + c ) + bc = ( a + c ) ( a + b )
BĐT cần chứng minh tương đương với :
\(\frac{a\left(a+b+c\right)-bc}{\left(a+c\right)\left(a+b\right)}+\frac{b\left(a+b+c\right)-ca}{\left(b+c\right)\left(b+a\right)}+\frac{c\left(a+b+c\right)-ab}{\left(c+a\right)\left(c+b\right)}\le\frac{3}{2}\)
\(\left(a^2+ab+ac-bc\right)\left(b+c\right)+\left(ab+b^2+bc-ac\right)\left(a+c\right)+\left(ac+bc+c^2-ab\right)\left(a+b\right)\le\frac{3}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
khai triển ra , ta được :
\(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2+6abc\le\frac{3}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)+3abc\)
\(\Rightarrow\frac{-1}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)\le-3abc\)
\(\Rightarrow a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\ge6abc\)( nhân với -2 thì đổi dấu )
\(\Rightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)\ge0\)
\(\Rightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)
vì BĐT cuối luôn đúng nên BĐT lúc đầu đúng
Dấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Áp dụng bất đẳng thức Cosi
\(\Rightarrow a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(a^2+c^2\ge2ac\)
\(\Rightarrow a^2+b^2+b^2+c^2+c^2+a^2\ge2ab+2bc+2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\left(đpcm\right)\)
Áp dụng bất đẳng thức Cauchy
Ta có:
\(a^2+b^2\ge2\sqrt{a^2\cdot b^2}\)
Suy ra \(a^2+b^2\ge2ab\)
Ta có:
\(a^2+c^2\ge2\sqrt{a^2\cdot c^2}\)
Suy ra: \(a^2+c^2\ge2ac\)
Tương tự:
\(b^2+c^2\ge2\sqrt{b^2\cdot c^2}\)
Suy ra: \(b^2+c^2\ge2bc\)
Cộng vế theo vế:
Ta có: \(2\cdot\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
Vậy \(a^2+b^2+c^2\ge ab+bc+ca\)(đpcm)
a)Bunhia:
\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)
b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bđt câu a
=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)
Tự tìm dấu "="
Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh
Bất đẳng thức của em bị sai (ngược chiều). BĐT đúng phải là:
\(\dfrac{ab}{a^2+bc+ca}+\dfrac{bc}{b^2+ab+ca}+\dfrac{ca}{c^2+ab+bc}\le\dfrac{a^2+b^2+c^2}{ab+bc+ca}\)
Chứng minh:
Đặt vế trái của BĐT cần chứng minh là P
Áp dụng Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Thiết lập tương tự và cộng lại:
\(\Rightarrow P\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ab+ca\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
\(\Rightarrow P\le\dfrac{ab^3+bc^3+ca^3+2abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
Nên ta chỉ cần chứng minh:
\(ab^3+bc^3+ca^3+2abc\left(a+b+c\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow abc\left(a+b+c\right)\le a^3b+b^3c+c^3a\)
\(\Leftrightarrow a+b+c\le\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\) (đúng theo C-S)