Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(VT-VP\ge\frac{\left(a+b+c\right)^2}{3}-\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\frac{a+b+c-3}{3}\right)\ge0\) (áp dụng bđt cô si cho 3 số dương)
P/s: Is it true? Trong sách nâng cao và pt toán 8 của tác giả vũ hữu bình em nhớ nó phức tạp lắm mà sao em làm lai đơn giản nhỉ?
a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)
\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)
\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)
b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)
\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)
C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)
\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)
\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)
\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)
d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)
\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)
e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)
Ta co:
\(\sqrt[4]{4}VT=\sqrt[4]{4}\sqrt[4]{a^3}+\sqrt[4]{4}\sqrt[4]{b^3}+\sqrt[4]{4}\sqrt[4]{c^3}\)
\(=\sqrt[4]{4a^3}+\sqrt[4]{4b^3}+\sqrt[4]{4c^3}\)
\(=\sqrt[4]{\left(a+b+c\right)a^3}+\sqrt[4]{\left(a+b+c\right)b^3}+\sqrt[4]{\left(a+b+c\right)c^3}\)
\(>\sqrt[4]{a^4}+\sqrt[4]{b^4}+\sqrt[4]{c^4}=a+b+c\)
\(\Rightarrow VT>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)
Ta bình phương cả 2 vế của phương trình rồi giải: √(1/a^2 + 1/b^2 + 1/c^2)^2 = (1/a + 1/b + 1/c)^2 <=> 1/a^2 + 1/b^2 + 1/c^2 = 1/a^2 + 1/ b^2 + 1/c^2 + 2/ab + 2/ac + 2/bc . Gpt vế phải a có : 1/a^2 + 1/b^2 + 1/c^2 + 2/ab + 2/ac + 2/bc = 1/a^2 + 1/b^2 + 1/c^2 + 2(a+b+c)/abc . Theo đề bài có a+b+c=0 thay vào biểu thức trên ta suy ra được điều phải chứng minh
a) \(\sqrt{49.360}=\sqrt{7^2.6^2.10}=7.6\sqrt{10}=42\sqrt{10}\)
b)\(\sqrt{125a^2}=\sqrt{5^2.5.a^2}=5.\left|a\right|\sqrt{5}=-5a\sqrt{5}\) ( vì a<0)
c)\(-\sqrt{500.162}=-\sqrt{10^2.5.9^2.2}=-10.9\sqrt{5.2}=-90\sqrt{10}\)
d) \(\frac{1}{3}\sqrt{225a^2}=\frac{1}{3}\sqrt{15^2.a^2}=\frac{1}{3}.15.\left|a\right|=\frac{15a}{3}\) ( a>0)