Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Bu - nhi- a ta có:
+) \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
+) \(\left(a^2+b^2+c^2\right)^2\le\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\le\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2\le a^3+b^3+c^3\left(đpcm\right)\)
\(\Rightarrow\) Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=3\\a=b=c\end{matrix}\right.\) \(\Leftrightarrow a=b=c=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 4:
a) C/m tương đương
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) => luôn đúng
=> \(\dfrac{a+b}{2}\ge\sqrt{ab}\Rightarrowđpcm\)
b) \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)
Áp dụng BĐT: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
+) \(\dfrac{bc}{a}+\dfrac{ba}{c}=b\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge2b\)
+) \(\dfrac{ca}{b}+\dfrac{cb}{a}=c\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2c\)
+) \(\dfrac{ab}{c}+\dfrac{ac}{b}=a\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a\)
Cộng vế vs vế ta có:
\(2\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\Rightarrowđpcm\)
c) Áp dụng BĐT Cô-si cho 2 số không âm ta có:
\(12^2=\left(3a+5b\right)^2\ge4.3a.5b=60ab\)
=> \(ab\le\dfrac{12}{5}\)
Vậy GTLN của P là \(\dfrac{12}{5}\)
Dấu ''=" xảy ra khi \(3a=5b\), từ đó ta có hệ
\(\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)
Chỉ 1 dòng thôi :v
\(\dfrac{a^2}{b+c}+\dfrac{c^2}{a+b}+\dfrac{b^2}{a+c}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)