Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)
mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac
\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:
\(VT=\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\)
Mặt khác:
\(\sqrt{\frac{x}{x+y}}=\sqrt{\frac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)
Áp dụng Bđt Cauchy-Schwarz ta có:
\(VT^2\le2\left[\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right]\left(x+y+z\right)\)
\(\Leftrightarrow VT^2\le\frac{4\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Vì \(VP^2=\frac{9}{2}\) nên cần chứng minh \(VT^2\le\frac{9}{2}\)
\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\left(x+y+z\right)\left(xy+yz+zx\right)\)
bn tự lm tiếp
min của \(A=a^2+b^2+c^2-2\sqrt{3abc}\) chứ nhỉ
à nhầm