\(\frac{a^3+b^3}{ab+9}+\frac{b^3+c^3}{bc+9}+\frac{c^3+a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2020

\(\frac{\left(a+b\right)^3}{ab+9}+\frac{2}{3}\left(ab+9\right)+12\ge6a+6b\)

\(\Sigma\frac{a^3+b^3}{ab+9}\ge\frac{1}{4}\Sigma\frac{\left(a+b\right)^3}{ab+9}\ge\frac{1}{4}\left(12\left(a+b+c\right)-\frac{2}{3}\left(\frac{\left(a+b+c\right)^2}{3}+27\right)-36\right)=9\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Bài 1:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{a^4}{a^2b+9a}+\frac{b^4}{ab^2+9b}+\frac{b^4}{b^2c+9b}+\frac{c^4}{bc^2+9c}+\frac{c^4}{c^2a+9c}+\frac{a^4}{ca^2+9a}\)

\(\ge \frac{(a^2+b^2+b^2+c^2+c^2+a^2)^2}{ab(a+b)+bc(b+c)+ca(c+a)+18(a+b+c)}=\frac{4(a^2+b^2+c^2)^2}{ab(a+b)+bc(b+c)+ca(c+a)+162}\)

Áp dụng BĐT AM-GM:

\(a^3+b^3+c^3=\frac{a^3+b^3+b^3}{3}+\frac{b^3+c^3+c^3}{3}+\frac{c^3+a^3+a^3}{3}\geq ab^2+bc^2+ca^2\)

Tương tự: \(a^3+b^3+c^3\geq a^2b+b^2c+c^2a\)

\(\Rightarrow a^3+b^3+c^3\geq \frac{ab(a+b)+bc(b+c)+ca(c+a)}{2}\)

\(\Rightarrow a^3+b^3+c^3+ab(a+b)+bc(c+a)+ca(c+a)\geq \frac{3}{2}[ab(a+b)+bc(b+c)+ca(c+a)]\)

\(\Leftrightarrow (a^2+b^2+c^2)(a+b+c)\geq \frac{3}{2}[ab(a+b)+bc(b+c)+ca(c+a)]\)

\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\leq 6(a^2+b^2+c^2)\)

Do đó: \(\text{VT}\geq \frac{4(a^2+b^2+c^2)^2}{6(a^2+b^2+c^2)+162}\)

Đặt \(a^2+b^2+c^2=t\). Dễ thấy \(t\geq \frac{(a+b+c)^2}{3}=27\). Khi đó:

\(\frac{4(a^2+b^2+c^2)^2}{6(a^2+b^2+c^2)+162}-9=\frac{4t^2}{6t+162}-9=\frac{2(t-27)(2t+27)}{6t+162}\geq 0, \forall t\geq 27\)

\(\Rightarrow \text{VT}\geq \frac{4t^2}{6t+162}\geq 9\) (đpcm). Dấu "=" xảy ra khi $a=b=c=3$

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Bài 2:

Áp dụng BĐT AM-GM:

\(\text{VT}=a-\frac{ab^2}{a+b^2}+b-\frac{bc^2}{b+c^2}+c-\frac{ca^2}{c+a^2}=(a+b+c)-\left(\frac{ab^2}{a+b^2}+\frac{bc^2}{b+c^2}+\frac{ca^2}{c+a^2}\right)\)

\(\geq (a+b+c)-\left(\frac{ab^2}{2\sqrt{ab^2}}+\frac{bc^2}{2\sqrt{bc^2}}+\frac{ca^2}{\sqrt{ca^2}}\right)=(a+b+c)-\frac{1}{2}(\sqrt{ab^2}+\sqrt{bc^2}+\sqrt{ca^2})\)

\(\geq (a+b+c)-\frac{1}{2}\left(\frac{ab+b}{2}+\frac{bc+c}{2}+\frac{ca+a}{2}\right)=\frac{3(a+b+c)-(ab+bc+ac)}{2}\)

Tiếp tục áp dụng BĐT AM-GM:

\((a+b+c)^2\geq 3(ab+bc+ac)=(a^2+b^2+c^2)(ab+bc+ac)\geq (ab+bc+ac)^2\)

\(\Rightarrow a+b+c\geq ab+bc+ac\)

Do đó: \(\text{VT}\geq \frac{3(a+b+c)-(a+b+c)}{2}=\frac{a+b+c}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

20 tháng 3 2020

Giả sử b=  min {a,b,c}

\(VT\ge\frac{a^3+b^3+c^3}{\frac{2\left(a+b+c\right)^3}{27}}+\frac{1}{2}\left(\Sigma\frac{\left(a+b\right)^2}{ab+c^2}+\Sigma\frac{\left(a-b\right)^2}{ab+c^2}\right)\)

\(\ge\left[\frac{27\left(a^3+b^3+c^3\right)}{2\left(a+b+c\right)^3}+\frac{2\left(a+b+c\right)^2}{\left(ab+bc+ca+a^2+b^2+c^2\right)}\right]\)

Sau khi quy đồng ta cần chứng minh biểu thức sau đây không âm:

Đó là điều hiển nhiên vì b = min {a,b,c}

30 tháng 12 2019

a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)

\(\Leftrightarrow\frac{3\left(a^4+b^4+c^4\right)-\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}-\frac{a^2+b^2+c^2-ab-bc-ca}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\frac{2\Sigma_{cyc}\left(a+b\right)^2\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}-\frac{\Sigma_{cyc}\left(a^2+b^2+c^2\right)\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2\ge0\)

Giả sử \(a\ge b\ge c\Rightarrow c^2+4ca+a^2-b^2\ge0\)

Ta có: \(VT=\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2+\left(b^2+4bc+c^2-a^2\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b+b-c\right)^2\)

\(=\left(2a^2+4ab+4ca\right)\left(a-b\right)^2+\left(2c^2+4ca+4bc\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b\right)\left(b-c\right)\ge0\)Ta có đpcm.

Đẳng thức xảy ra khi \(a=b=c\)

30 tháng 12 2019

b) \(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{abc}-\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\left(a^2+b^2+c^2-ab-bc-ca\right)\left(\frac{a+b+c}{abc}-\frac{9}{a^2+b^2+c^2}\right)\ge0\) (phân tích cái tử của phân thức thức nhất thành nhân tử rồi nhóm lại)

\(\Leftrightarrow\left[\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b-2c\right)^2\right]\left(\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)-9abc}{abc\left(a^2+b^2+c^2\right)}\right)\ge0\) (đúng)

Đẳng thức xảy ra khi \(a=b=c\)

P/s: Đáng ráng phân tích tiếp cái ngoặc phía sau cho đẹp nhưng lười quá nên thôi:v (dùng Cauchy nó cũng đúng rồi nên phân tích làm gì cho mệt)

14 tháng 3 2018

ÁP dụng BĐT cô-si, ta có \(a^3+b^3+c^3\ge3abc\Rightarrow\frac{a^3+b^3+c^3}{2abc}\ge\frac{3}{2}\)

Mà \(ab\le\frac{a^2+b^2}{2}\Rightarrow\frac{a^2+b^2}{c^2+ab}\ge\frac{2\left(a^2+b^2\right)}{2c^2+a^2+b^2}\)

Tương tự, ta có 

\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\ge2\left(\frac{a^2+b^2}{a^2+c^2+b^2+c^2}+...\right)\)

Đặt \(\left(a^2+b^2;...\right)=\left(x;y;z\right)\)

Ta có VT\(\ge\frac{3}{2}+2\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=\frac{3}{2}+2\left(\frac{x^2}{xy+zx}+\frac{y^2}{ỹ+yz}+\frac{z^2}{zx+zy}\right)\)

=> \(VT\ge\frac{3}{2}+2.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+3=\frac{9}{2}\)

=> \(A\ge\frac{9}{2}\left(ĐPCM\right)\)

Dấu = xảy ra <=> a=b=c>0

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

26 tháng 5 2017

2) \(VT=\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+3\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

Xét \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\) (1) 

Xét \(3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)

\(\Rightarrow3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\) (2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

26 tháng 5 2017

cám ơn nhiều.