K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)

\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2=0\)

\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(b^4-2b^2c^2+c^4\right)+\left(c^4-2c^2a^2+a^4\right)-a^4-b^4-c^4=0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-b^2\right)^2+\left(c^2-a^2\right)^2-a^4-b^4-c^4=0\)

\(\Leftrightarrow\left(a-b\right)^2c^2+a^2\left(b+c\right)^2+b^2\left(c+a\right)^2-a^4-b^4-c^4=0\)

\(\Leftrightarrow c^2\left[\left(a-b\right)^2-\left(a+b\right)^2\right]+a^2\left[\left(b+c\right)^2-a^2\right]+b^2\left[\left(c+a\right)^2-b^2\right]=0\)

\(\Leftrightarrow c^2\left[\left(a-b\right)^2-\left(a+b\right)^2\right]+a^2\left[\left(b+c\right)^2-\left(c-b\right)^2\right]+b^2\left[\left(c+a\right)^2-\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow-4abc^2+4a^2bc+4ab^2c=0\)

\(\Leftrightarrow4abc\left(a+b-c\right)=0\)

\(\Leftrightarrow0=0\)(luôn đúng)

=>đpcm

9 tháng 11 2015

cau 1 ne:
a^2 + b^2 + c^2 + 3
theo bat dang thuc cosi ban se co
a^2 + a + 1 >= 3a
b^2 + b + 1 >= 3b
c^2 + c + 1 >= 3c
cong 3 ve bat dang thuc lai voi nhau ban se co
a^2 + b^2 + c^2 + (a + b + c) + 3>= 3(a + b + c)
=> a^2 + b^2 + c^2 + 3 >= 2(a + b + c)
dau = xay ra <=> a=  b= c = 1
ma theo de bai ta lai co a^2 + b^2 + c^2 + 3 = 2(a + b + c)
=> a = b = c = 1 (dpcm)
b) (a - b)^2 + (b-c)^2 + (c - a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2
hay (a + b - 2b)^2 + (b + c - 2c)^2 + (c + a - 2a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2
dat. a + b = A
 b + c = B
c + a = C
=> ban se co:
(A - 2b)^2 + (B - 2c)^2 + (C - 2a)^2 = (A - 2c)^2 + (B - 2a)^2 + (C - 2b)^2
tu day ban nhan pha ra roi rut gon 2 ve cho nhau ban se co
Ab + Bc + Ca = Ac + Ba + Cb
hay (a + b)b + (b + c)c + (c + a)a = (a + b)c + (b + c)a + (c + a)b
hay ab + b^2 + bc + c^2 + ac + a^2 = 2ab + 2bc + 2ac
hay a^2 + b^2 + c^2 - ab - bc - ac = 0
hay 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0
hay (a-b)^2 + (b-c)^2 +(c - a)^2 = 0
dau = xay ra <=> a = b = c (dpcm)
c) a^3 + b^3 + c^3 + d^3 = (a + b)(a^2 -ab +b^2) + (c+d)(c^2 - cd + d^2) (**)
ban nhan thay a + b + c + d = 0
=> a + b = - c - d
thay vao pt (**) ban se co
-(c + d)(a^2 - ab + b^2) + (c + d)(c^2 - cd + d^2)
(c + d)(c^2 - cd + d^2 -a^2 + ab - b^2)
hay (c + d)(ab - cd + (c^2 + d^2 - a^2 - b^2)) (***)
ban co a + b = - c - d
hay (a + b)^2 = (c + d)^2
hay a^2 + b^2 + 2ab = c^2 + d^2 + 2cd
hay c^2 + d^2 - a^2 - b^2 = 2ab - 2cd
thay vao pt (***) ban se co
(c + d)(ab - cd + 2ab - 2cd)
hay (c +d)(3ab - 3cd) = 3(c+d)(ab - cd) (dpcm)
 

12 tháng 12 2015

hại nao ghê

 

5 tháng 6 2017

Do \(a,b< 1\Rightarrow a^3< a^2< a< 1;b^3< b^2< b< 1\)Ta có:\(\left(1-a^2\right)\left(1-b\right)>0\Rightarrow1+a^2b>a^2b\)

\(\Rightarrow1+a^2b>a^3+b^3haya^3+b^3< 1+a^2b\)Tương tự \(b^3+c^3< 1+b^2c;c^3+a^3< 1+c^2a\)

\(\Rightarrow2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)

8 tháng 4 2017

oh my dog toán lớp 8 đây á

mik làm đc hình như mỗi câu a thôi thì phải

8 tháng 4 2017

có câu a là lớp 8 có khả năng chứng minh mà hơi khó

16 tháng 8 2016

đề phần a thừa số 2

 

16 tháng 8 2016

thảo nào k ra