K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1

cho b=a+1

\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)

\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)

\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)

vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)

4 tháng 6 2018

Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k!  ^_^  *_*

8 tháng 12 2016

bản đồ hay hỏi?

A=(c+1)^2 

c=ab=>chắn=> c+1 le=> A le

10 tháng 12 2016

bị hỏng font tiếng việt  "Ạ le" nghĩa là le thêm dấu hỏi nữa

viết bằng thuật   toán

c=ab=2k=> c+1=2k+1=> A=2k+1;

tất nhiên đây không phải là một bài giải hoàn chỉnh

mấu chốt vấn đề là làm sao biến đổi  \(a^2+b^2+c^2=\left(c+1\right)^2\\ \)

31 tháng 10 2021

a, b là 2 số tự nhiên liên tiếp nên b=a+1. Thay vào p ta có:

p = a2+(a+1)2+a2*(a+1)2

p= a2+a2+2a+1+a2(a2+2a+1)

p=a4+ 2a3+3a2+2a+1

p=(a4+2a3+a) +2 (a2+a) +1

p=(a2+a)2+2 (a2+a) +1

p=[(a2+a) + 1]2

Vậy p là số chính phương.

Nếu a lẻ thì (a2+a) chẵn => p lẻ

Nếu a chẵn thì (a2+a) chẵn => p lẻ

Vậy p là số chính phương lẻ.

a, n-2;n;n+2 ( n là số  tự nhiên lẻ >= 3 )

b,n(n+2)-n(n-2) = 20 <=> n(n+2-n+2)=20 

<=> 4n = 20 <=> n=5

vậy 3 số đó là 3,5,7

22 tháng 8 2019

(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1

Vậy ba số tự nhiên lẻ tiên tiếp cần tìm là 3(=2.1+1);5(=2.1+2);7(=2.1+5)

2 tháng 4 2021

Ta có:

 \(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\\ \Leftrightarrow a=b=c\)

Lại có: \(a+b+c=3\Rightarrow a=b=c=1\)

\(\Rightarrow M=1^{2016}+1^{2015}+1^{2020}=1+1+1=3\)

2 tháng 8 2018

theo đề a chia 4 dư 2 nên a có dạng 4k+2

b chia 4 dư 1 nên b có dạng 4n+1 (với k và n là các số thuộc N)

ta có a.b= (4k+2)(4n+1)=16kn+8n+4k+2= 4(4kn+2n+k)+2

vì 4 chia hết cho 4 nên 4.(4kn+2n+k) chia hết cho 4. suy ra 4(4kn+2n+k)+2 chia 4 dư 2 hay a.b chia 4 dư 2

30 tháng 9 2017

Đặt a = 4x + 1 và b = 4y +  điều kiện b ≥ a .  

Biểu diễn b 2   –   a 2   =   8 ( 2 y 2   +   3 y   –   2 x 2   –   x   +   1 ) .

29 tháng 3 2016

a, b là 2 số tự nhiên liên tiếp nên a hoặc b sẽ là một số chẵn hoặc một số lẻ. => a=2k, b=2k+1, c=2k(2k+1)

P=a^2+b^2+c^2

P=(2k)^2+(2k+1)^2+[(2k)(2k+1)]^2

P=4k^2+4k^2+1+2.2k+4k^2(2k+1)^2

P=4k^2+4k^2+4k+4k^2.(4k^2+1+4k)+1 

mà 4k^2+4k^2+4k+4k^2.(4k^2+1+4k) chia hết cho 2

=> P ko chia hết cho 2.

P là số chính fuong lẻ