K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

mình nhầm.câu hỏi 2=-1

6 tháng 1 2016

a^4(b-c)++b^4(c-a)+c^4(a-b)=

a^4(b-c)-b^4(c-a)-z^4((b-c)+(c-a))=

phan tich trong ngoac ra

=(b-c)(a^4-c^4)+(c-a)(b^4-c^4)=

dung hang dang thuc a^2-b^2=(a-b)(a+b) de phan tich tiep

 

14 tháng 3 2019

ta có \(a^2,b^2,c^2\ge0\)

mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)

Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai 

còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik 

14 tháng 3 2019

Thank you

17 tháng 7 2016

Ta có : \(A=a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)

\(=a^4\left[-\left(c-a\right)-\left(a-b\right)\right]+b^4\left(c-a\right)+c^4\left(a-b\right)\)

\(=-a^4\left(c-a\right)+b^4\left(c-a\right)-a^4\left(a-b\right)+c^4\left(a-b\right)\)

\(=\left(c-a\right)\left(b^4-a^4\right)+\left(a-b\right)\left(c^4-a^4\right)\)

\(=\left(c-a\right)\left(b-a\right)\left(b+a\right)\left(b^2+a^2\right)+\left(a-b\right)\left(c-a\right)\left(c+a\right)\left(c^2+a^2\right)\)

\(=\left(c-a\right)\left(b-a\right)\left[\left(a+b\right)\left(a^2+b^2\right)-\left(c+a\right)\left(c^2+a^2\right)\right]\)

\(=\left(c-a\right)\left(b-a\right)\left[a^3+b^3+ab\left(a+b\right)-c^3-a^3-ac\left(a+c\right)\right]\)

\(=\left(c-a\right)\left(b-a\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\)

\(=\left(c-a\right)\left(b-a\right)\left(b-c\right)\left[\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{2}\right]\)

Đến đây bạn tự làm nhé :)