A.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

Đáp án cần chọn là: D

+) Ta có A=90.17+34.40+12.51

Nhận thấy 17⋮17;34⋮17;51⋮17nên A=90.17+34.40+12.51 chia hết cho 17 nên ngoài ước là 1 và chính nó thì A còn có ước là 17. Do đó A là hợp số.

+) Ta cóB=5.7.9+2.5.6=5.(7.9+2.6)⋮5nên B=5.7.9+2.5.6 ngoài ước là 1 và chính nó thì A còn có ước là 5. Do đó B là hợp số.

Vậy cả A và B đều là hợp số.

18 tháng 11 2018

A=2.25-2.24

A=2 => A là số nguyên tố

Bài 4:

a: TH1: p=2

\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố

=>Nhận

TH2: p=2k+1

\(5p+3=5\left(2k+1\right)+3\)

=10k+5+3

=10k+8

=2(5k+4)⋮2

=>Loại

Vậy: p=2

b: TH1: p=3

p+8=3+8=11; p+10=3+10=13

=>Nhận

TH2: p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>Loại

TH3: p=3k+2

p+10

=3k+2+10

=3k+12

=3(k+4)⋮3

=>Loại

Vậy: p=3

c: TH1: p=5

p+2=5+2=7

p+6=5+6=11

p+18=5+18=23

p+24=5+24=29

=>Nhận

TH2: p=5k+1

p+24

=5k+1+24

=5k+25

=5(k+5)⋮5

=>Loại

TH3: p=5k+2

p+18

=5k+2+18

=5k+20

=5(k+4)⋮5

=>Loại

TH4: p=5k+3

p+2=5k+3+2

=5k+5

=5(k+1)⋮5

=>Loại

TH5: p=5k+4

p+6=5k+4+6

=5k+10

=5(k+2)⋮5

=>Loại

Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3

=>Loại

=>p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>p+8 là hợp số

Bài 4:

a: TH1: p=2

\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố

=>Nhận

TH2: p=2k+1

\(5p+3=5\left(2k+1\right)+3\)

=10k+5+3

=10k+8

=2(5k+4)⋮2

=>Loại

Vậy: p=2

b: TH1: p=3

p+8=3+8=11; p+10=3+10=13

=>Nhận

TH2: p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>Loại

TH3: p=3k+2

p+10

=3k+2+10

=3k+12

=3(k+4)⋮3

=>Loại

Vậy: p=3

c: TH1: p=5

p+2=5+2=7

p+6=5+6=11

p+18=5+18=23

p+24=5+24=29

=>Nhận

TH2: p=5k+1

p+24

=5k+1+24

=5k+25

=5(k+5)⋮5

=>Loại

TH3: p=5k+2

p+18

=5k+2+18

=5k+20

=5(k+4)⋮5

=>Loại

TH4: p=5k+3

p+2=5k+3+2

=5k+5

=5(k+1)⋮5

=>Loại

TH5: p=5k+4

p+6=5k+4+6

=5k+10

=5(k+2)⋮5

=>Loại

Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3

=>Loại

=>p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>p+8 là hợp số

Bài 4:

a: TH1: p=2

\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố

=>Nhận

TH2: p=2k+1

\(5p+3=5\left(2k+1\right)+3\)

=10k+5+3

=10k+8

=2(5k+4)⋮2

=>Loại

Vậy: p=2

b: TH1: p=3

p+8=3+8=11; p+10=3+10=13

=>Nhận

TH2: p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>Loại

TH3: p=3k+2

p+10

=3k+2+10

=3k+12

=3(k+4)⋮3

=>Loại

Vậy: p=3

c: TH1: p=5

p+2=5+2=7

p+6=5+6=11

p+18=5+18=23

p+24=5+24=29

=>Nhận

TH2: p=5k+1

p+24

=5k+1+24

=5k+25

=5(k+5)⋮5

=>Loại

TH3: p=5k+2

p+18

=5k+2+18

=5k+20

=5(k+4)⋮5

=>Loại

TH4: p=5k+3

p+2=5k+3+2

=5k+5

=5(k+1)⋮5

=>Loại

TH5: p=5k+4

p+6=5k+4+6

=5k+10

=5(k+2)⋮5

=>Loại

Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3

=>Loại

=>p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>p+8 là hợp số

19 tháng 11 2018

Câu trả lời đúng :

Z

F

G

H

Chúc bạn học tốt !

19 tháng 11 2018

Câu trả lời đúng là : A ; D ; F ; G ;

16 tháng 10 2018

1. A

2.C

3.F

4.A

5.D

HOK TỐT

4 tháng 3 2020

B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y

⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)

⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15

⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1

⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28

3 tháng 3 2020

a) ab+ ba \(⋮\)11

= a.10 + b + b.10+a

= ( 10a+ a) + ( 10b+b)

= 11a + 11b

=11 (a+b)

Vì 11 \(⋮\)11 nên 11(a+b) \(⋮\)11

Vậy...