Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{b+c-5}{a}=\dfrac{a+c+2}{b}=\dfrac{a+b+3}{c}=\dfrac{2a+2b+2c}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}b+c-5=2a\\a+c+2=2b\\a+b+3=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c=a+5\\a+b+c=b-2\\a+b+c=c-3\end{matrix}\right.\)
Lại có \(\dfrac{1}{a+b+c}=2\Rightarrow a+b+c=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}a+5=\dfrac{1}{2}\\b-2=\dfrac{1}{2}\\c-3=\dfrac{1}{2}\end{matrix}\right.\)
Từ đó tự giải ra
`VT = (b-c)/((a-b)(a-c)) + (c-a)/((b-c)(b-a)) +(a-b)/((c-a)(c-b)) = 2/(a-b) + 2/(b-c) + 2/(c-a)`
`=-((a-b-a+c)/((a-b)(a-c))+(b-c-b+a)/((b-c)(b-a))+(c-a-c+b)/((c-a)(c-b)))`
`=-((a-b)/((a-b)(a-c))-(a-c)/((a-b)(a-c))+(b-c)/((b-c)(b-a))-(b-a)/((b-c)(b-a))+(c-a)/((c-a)(c-b))-(c-b)/((c-a)(c-b)))`
`= 1/(c-a)+1/(a-b)+1/(a-b)+1/(b-c)+1/(b-c)+1/(c-a)`
`=2/(a-b)+2/(b-c)+2/(c-a)=VP(đpcm)`
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
Bài 1:
a/ \(\Leftrightarrow\left(\left[x\right]-1\right)\left(\left[x\right]-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[x\right]=1\\\left[x\right]=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le x< 2\\4\le x< 5\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(\left[x\right]-2\right)\left(\left[x\right]-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[x\right]=2\\\left[x\right]=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2\le x< 3\\4\le x< 5\end{matrix}\right.\)
Bài 2:
\(\Leftrightarrow2\left[x\right]=\left[x\right]+\left\{x\right\}+2\left\{x\right\}\)
\(\Leftrightarrow\left[x\right]=3\left\{x\right\}\)
\(\Rightarrow0\le\left[x\right]< 3\)
- Với \(\left[x\right]=0\Rightarrow\left\{x\right\}=0\Rightarrow x=0\)
- Với \(\left[x\right]=1\Rightarrow\left\{x\right\}=\frac{1}{3}\Rightarrow x=\frac{4}{3}\)
- Với \(\left[x\right]=2\) \(\Rightarrow\left\{x\right\}=\frac{2}{3}\Rightarrow x=\frac{8}{3}\)
Bài 3:
\(A>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)
\(A< \frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=2\)
\(\Rightarrow1< A< 2\Rightarrow\left[A\right]=1\)
\(1,|a-b+c|=|-8+5+6|=|3|=0\)
\(2,|a+b-c|=|-8-5-6|=|-19|=19\)
\(3,|a-b-c|=|-8+5-6|=|-9|=9\)
\(4,|-a+b+c|=|8-5+6|=|9|=9\)