K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6+...+\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)

\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)

\(A=\left(-7\right)\left(1+-7+7^2\right)+\left(-7\right)^4\left(1+-7+7^2\right)+...+\left(-7\right)^{2005}\left(1+-7+7^2\right)\)

\(A=\left(-7\right)\cdot43+\left(-7\right)^4\cdot43+...+\left(-7\right)^{2005}\cdot43\)

\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2008}\right]⋮43\left(đpcm\right)\)

22 tháng 12 2017

\(A=\left(-7\right)+\left(-7\right)^2+......+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+.......\) \(+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)\left[1+\left(-7\right)+\left(-7\right)^2\right]+......+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+\left(-7\right)^3.43+......+\left(-7\right)^{2005}.43\)
\(=43\left[\left(-7\right)+\left(-7\right)^3+.....+\left(-7\right)^{2005}\right]\).
Suy ra A chia hết cho 43.


22 tháng 12 2017

A=(-7+-7^2+-7^3)+.....+(-7^2005+-7^2006+-7^2007)

A=-7(1+-7+-7^2)+.....+-7^2005(1+-7+-7^2)

A=-7.43+....+-7^2005.43\(⋮\)43\(\Rightarrow\)dpcm

8 tháng 12 2017

Ta thấy \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\)

\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)

\(A=-7.\left[1+\left(-7\right)+49\right]+\left(-7\right)^4.\left[1+\left(-7\right)+49\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+49\right]\)

\(A=-7.43+\left(-7\right)^4.43+...+\left(-7\right)^{2005}.43\)

\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2005}\right]⋮43\)

Vậy A chia hết cho 43.

5 tháng 4 2020

tổng A luôn chia hết nha bạn

15 tháng 12 2016

Ta có : A = -7 + (-7)2 + (-7)3 + ....... + (-7)2007 

=> -7A = (-7)2 + (-7)3 + ....... + (-7)2008 

=> -7A - A = (-7)2008 - (-7)

=> -8A = (-7)2008 + 7

=> A = .........................

21 tháng 6 2017

a) Ta có:

\(7^{2006}-7^{2005}+7^{2004}\)

\(=7^{2004}\left(7^2-7+1\right)\)

\(=7^{2004}\times43\)

\(\Rightarrow7^{2006}-7^{2005}+7^{2004}\)chia hết cho 43 (vì có chứa thừa số 43)

b) Ta có:

\(32^{17}+16^{21}-2^{82}\)

\(=\left(2^5\right)^{17}+\left(2^4\right)^{21}-2^{82}\)

\(=2^{85}+2^{84}-2^{82}\)

\(=2^{82}\left(2^3+2^2-1\right)=2^{82}\times11=2^{80}\times2^2\times11\)

\(=2^{80}\times44\)

\(\Rightarrow32^{17}+16^{21}-2^{82}\)chia hết cho 44 (vì có chứa thừa số 44)

15 tháng 7 2016

Bài 7 :43^1 =43. tận cùng là số 3 

43^2= 1849 tận cùng là số 9 

43^3 =79507 tận cùng là số 7 

43^4 =3418801 tận cùng là số 1 

43^5 = 147008443 tiếp tục tận cùng là số 3 

vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1 

ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7 

tương tự ta có số tận cùng của 17^17 là 7. 

vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)

Bài 8 : \(7^{1000}=\left(7^2\right)^{500}=49^{500}\)

\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)

Ta có : lũy thừa tận cùng là 9 khi nâng bậc lũy thừa chẵn nên tận cùng là 1.

=> \(49^{500}\) tận cùng là 1

=> \(9^{500}\) tận cùng là 1

=> (...1) - (....1) = (....0)

Vì tận cùng là 0 nên chia hết cho 10 

Vậy  71000 - 31000 chia hết cho 10 (đpcm)

15 tháng 7 2016

Câu 8 thiếu số 0

13 tháng 2 2016

A = (-7) + (-7)+ ...+ (-7)2006 + (-7)2007

A = [ (-7) + (-7)2 + (-7)3 ] + [ (-7)4 + (-7)5 + (-7)6 ] + ... + [ (-7)2005 + (-7)2006 + (-7)2007 ]

A = (-7) . [ 1 + (-7) + (-7)2 ] + (-7)4 . [ 1+ (-7) + (-7)2 ] + ... + (-7)2005 . [ 1 + (-7) + (-7)2 ]

A = (-7) . 43 + (-7)4 . 43 + ... + (-7)2005 . 43

A = 43 . [ (-7) + (-7)4 + ... + (-7)2005 ]

=>A chia hết cho 43

Vậy A chia hết cho 43