Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có a=5k+2
b=5q+3
13a+11b=13(5k+2)+11(5q+3)=65k+26+55q+33=(65k+55q)+59
Ta có 65k+55q chia hết cho 5 vì mỗi số hạng đều chia hết cho 5
59 chia 5 dư 4
Vậy 13a+11b chia 5 dư 4
a)Trong phép chia cho 2 :số dư có thể là 0 ; 1
Trong phép chia cho 3 : số dư có thể là 0 ; 1 ; 2
Trong phép chia cho 4 : số dư có thể là 0 ; 1 ; 2 ; 3
Trong phép chia cho 5 : số dư có thể là 0 ; 1 ; 2 ; 3 ; 4
b) dạng tổng quát của số chia hết cho 2 là 2k
dạng tổng quát của số chia hết cho 3 là 3k
dạng tổng quát của số chia hết cho 4 là 4k
c)dạng tổng quát của số chia hết cho 3 dư 1 là 3k+1 ( k€n)
dạng tổng quát của số chia hết cho 3 dư 2 là : 3k+2 (k€n)
d) dạng tổng quát của số chia 4 dư 1 là: 4k+1
dạng tổng quát của số chia 5 dư 2 là : 5k+2
Ta có a:7 dư 5=>(a+2)\(⋮\)7=>(a+2+7)\(⋮\)7=>(a+9)\(⋮\)7
a:13 dư 4=>(a+9)\(⋮\)13
=>(a+9)\(⋮\)7 và 13
Mà ƯCLN(7,13)=1
=>(a+9)\(⋮\)7*13
=>(a+9)\(⋮\)91
=>a:91 dư 82
Gọi q1 là thương của a khi chia cho 7 =>a=7q1+5
=>a+9=7q1+14=7.(q1+2)=>a+9 chia hết cho 7 (1)
Gọi q2 là thương của a khi chia cho 13 =>a=13q2+4
=>a+9=13q2+13=13.(q2+1)=>a+9 chia hết cho 13 (2)
Từ (1) và (2) suy ra: a+9 là bội chung của 7 và 13
Mà U7CLN(7;13)=1 =>a+9 chia hết cho 7.13=91
Đặt a+9=91k =>a=91k-9 =91(k-1)+82
=>a chia 91 dư -9 hoặc dư 82
Mà a là số tự nhiên nên a chia 91 dư 82
5A=5+52+53+.....+513
5A—A=(5+52+53+...+514)—(1+5+52+...+513)
4A=514—1
A=(514—1):4
Đoạn này tự làm
=> a+9 chia hết cho 7 và 13. Vì 7 và 13 nguyên tố cùng nhau nên a+9 chia hết cho 7x13=91
=> a chia 91 dư 91-9=82
a : 7 (dư 5)
a : 13 (dư 4)
=> a + 9 chia hết cho 7 và 13.
7 và 13 đều là số nguyên tố => a + 9 chia hết cho 7 x 13 = 91.
=> a chia cho 91 dư 91-9 = 82.
Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem chia số đó cho 91 dư 82.
C1:
Gọi so can tim la x
Theo bài ra ta có
x = 7a + 5 va x= 13b + 4
Ta lại có x + 9 = 7a + 14 = 13b + 13
-> x + 9 chia hết cho 7 và 13
-> x + 9 chia hết cho 7.13 = 91
-> x + 9 = 91m -> x = 91m - 9 = 91(m -1 + 1) - 9 = 91(m-1) + 82
Vậy x chia 91 dư 82
C2:
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13 => A + 9 = k.7.13 = 91k
=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư -9 (hoặc 82)
C3:
Gọi a là số tự nhiên đó
Theo bài ra ta có
a = 7k + 5 và a = 13l + 4
Ta lại có a + 9 = 7k + 14 = 13l + 13
-> a + 9 chia hết cho 7 và 13
-> a + 9 chia hết cho 7.13 = 91
-> a + 9 = 91m -> a = 91m - 9 = 91(m -1 + 1) - 9 = 91(m-1) + 82
Vậy a chia 91 dư 82