Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.\(A=-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)
\(A.\left(B+C\right)=-\dfrac{3}{4}x^2yz\left[\dfrac{1}{3}xy^2+\left(-\dfrac{8}{7}xy^2\right)\right]\)
\(=-\dfrac{3}{4}x^2yz\left(\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2\right)\)
\(=\left(-\dfrac{3}{4}x^2yz\right)\dfrac{1}{3}xy^2-\left(-\dfrac{3}{4}x^2yz\right)\dfrac{8}{7}xy^2\)
\(=-\dfrac{1}{4}x^3y^3z+\dfrac{6}{7}x^3y^3z\)
1. Ta có: \(-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)
\(B+C=\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2=-\dfrac{17}{21}xy^2\)
\(A.\left(B+C\right)=\left(-\dfrac{3}{4}x^2yz\right).\left(-\dfrac{17}{21}xy^2\right)\)
\(\Rightarrow A.\left(B+C\right)=\dfrac{17}{28}x^3y^3z\)
a) Các đơn thức đồng dạng là:
\(5x^3y;x^3y\)
b) Ta có:
\(2yx.\left(-3x^2y\right)\)
= \(\left(2.\left(-3\right)\right).\left(y.y\right).\left(x.x^2\right)\)
= \(-6y^2x^3\)
Vậy đơn thức trên có:
+ Phần hệ số: \(-6\)
+ Phần biến: \(y^2x^3\)
+ Bậc: \(3\)
Khẳng định (A) 3x2y3 và 3x3y2 là hai đơn thức đồng dạng : Sai
a/=X^4*y*(1-5)+(2-5)*X*Y^3
=X^4*y*-4+-3*X*Y^3
tạm thời tớ giúp được thế thôi.để tớ còn làm nốt ba bài hình cô giao đã
\(a)\) Ta có :
\(\frac{x}{18}=\frac{y}{9}\)\(\Leftrightarrow\)\(\frac{x}{2}=y\)
\(\Rightarrow\)\(x=2y\)
Thay \(x=2y\) vào \(A=\frac{2x-3y}{2x+3y}\) ta được :
\(A=\frac{2.2y-3y}{2.2y+3y}=\frac{4y-3y}{4y+3y}=\frac{y}{7y}=\frac{1}{7}\)
Vậy ... ( tự kết luận )
Chúc bạn học tốt ~
a) Đơn thức: \(2xy^2;\dfrac{x}{3y};5\)
b) Đa thức: \(2x+3y;\dfrac{x-1}{x+1};x^3y^2-1\)