K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

AH
Akai Haruma
Giáo viên
20 tháng 10 2021

Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)

\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)

\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác

Do đó ta có đpcm.

23 tháng 7 2023

A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)

A=(c^2-(a-b)^2).((a+b)^2-c^2)

A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)

Do c+b-a>0

c+a-b>0

a+b-c>0

a+b+c>0

=>A>0

@Hà Nhung Huyền Trang

17 tháng 7 2016


A = 2a2b+ 2b2c+ 2a2c− a− b− c4

<=> A = 4a2c− ( a4+b+ c− 2a2b+ 2a2c− 2b2c)

<=> A = 4a2c− ( a− b+ c2)2

<=> A = ( 2ac + a− b+ c) ( 2ac − a+ b− c)

<=> A = [ (a+c)− b] ( b− (a−c)2)

<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\

a+b+c>0

a+c−b>0

b+a−c>0

b−a+c>

=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0

A>0 (Dpcm)

15 tháng 10 2021

1.

\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)

Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)

Từ đó ta được đpcm

 

 

 

15 tháng 10 2021

uầy e đọc chả hỉu j lun :(

14 tháng 4 2017

dùng BĐT tam giác là ra

9 tháng 9 2017

Từ giả thiết suy ra 
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu). 
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều 

P/s: Tham khảo nhé

9 tháng 9 2017

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)\)

Do a;b;c là độ dài 3 cạnh tam giác nên \(c>a-b;c>b-a;a+b+c>0;a+b>c\)

\(\Rightarrow c-a+b>0;c+a-b>0;a+b+c>0;a+b-c>0\)

Nên \(\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)>0\)

Hay \(A>0\)(đpcm)