K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

a) \(A=\frac{3x^2+5}{x^2+1}=\frac{3\left(x^2+1\right)+2}{x^2+1}=3+\frac{2}{x^2+1}\)

để A nguyên =>\(x^2+1\inƯ\left(2\right)\)

\(\Leftrightarrow x^2\in\left\{0;1\right\}\)

\(\Leftrightarrow x\in\left\{0;\pm1\right\}\)

2 tháng 12 2019

Để A nguyên thì \(3x^2+5⋮x^2+1\)

\(\Rightarrow3\left(x^2+1\right)+2⋮x^2+1\)

\(\Rightarrow2⋮x^2+1\)

\(\Rightarrow x^2+1\in\left\{1;2\right\}\Rightarrow x=0;x=1;x=-1\)

16 tháng 4 2016

2)\(A=\frac{6x-5}{3x+1}=\frac{6x+2-7}{3x+1}=\frac{2\left(3x+1\right)-7}{3x+1}=2-\frac{7}{3x+1}\)

Do đó, để A nhận giá trị nguyên thì 7 chia hết cho 3x+1 hay (3x+1)EƯ(7)={1;-1;7;-7}

=>3xE{0;-2;6;-8}

=>xE{0;2}

*)Nếu x=0 thì A=2-\(\frac{7}{3\cdot0+1}=2-7=-5\)

*)Nếu x=2 thì A=2-\(\frac{7}{3\cdot2+1}=2-1=1\)

=>Để A có GTNN thì x=0

Vậy để A nhận giá trị nguyên thì xE{0;2}

Để A có GTNN là -5 thì x=0

8 tháng 12 2021

a) A =  \(\dfrac{1}{x-1}-\dfrac{4}{x+1}+\dfrac{8x}{\left(x-1\right)\left(x+1\right)}\) 

\(\dfrac{x+1-4x+4+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{5}{x-1}\) => đpcm

b) \(\left|x-2\right|=3=>\left[{}\begin{matrix}x-2=3< =>x=5\left(C\right)\\x-2=-3< =>x=-1\left(L\right)\end{matrix}\right.\)

Thay x = 5 vào A, ta có:

A = \(\dfrac{5}{5-1}=\dfrac{5}{4}\)

c) Để A nguyên <=> \(5⋮x-1\)

x-1-5-115
x-4(C)0(C)2(C)6(C)

 

2 tháng 10 2016

P=n3+4n-5=n3-n+5n-5=n(n2-1)+5(n-1)

=n(n-1)(n+1)+5(n-1)=(n-1)[n(n+1)+5]

=(n-1)(n2+n+5)

Vì n \(\in\) N nên n2+n+5 > 1

Để P là số nguyên tố thì n-1=1=>n=2

Thử lại thấy n=2 thỏa mãn

Vậy n=2

21 tháng 12 2016

1) a)  x  =  -7 / 44

    b)  x  =  -1 / 8

24 tháng 12 2021

b: \(\dfrac{A\left(x\right)}{B\left(x\right)}=\dfrac{x^4-\dfrac{1}{2}x^3+\dfrac{1}{2}x^3-\dfrac{1}{4}x^2+\dfrac{9}{4}x^2-\dfrac{9}{8}x-\dfrac{15}{8}x+\dfrac{15}{16}+a-\dfrac{1}{16}}{2x-1}\)

Để A(x) chia hết cho B(x) thì a-1/16=0

hay a=1/16

12 tháng 5 2020

a trước nhé, vì muốn P là số nguyên nên a sẽ chia hết cho a^2-a+1

=>a^2-a+1 - a^2 + a chia hết cho a ( Theo tc chia hết )

=>1 chia hết cho a

=>a thuộc Ư(1) nói cách khác, a=1

12 tháng 5 2020

Sao toán 8 dễ thé nhỉ? Thôi kệ 

1 tháng 12 2021

\(a,A=\dfrac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}\\ A=\dfrac{7x+35}{\left(x-1\right)\left(x+5\right)}=\dfrac{7\left(x+5\right)}{\left(x-1\right)\left(x+5\right)}=\dfrac{7}{x-1}\\ b,A\in Z\\ \Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;8\right\}\left(tm\right)\\ b,A< 0\Leftrightarrow x-1< 0\left(7>0\right)\\ \Leftrightarrow x< 1;x\ne-5\\ c,\left|A\right|=3\Leftrightarrow\dfrac{7}{\left|x-1\right|}=3\Leftrightarrow\left|x-1\right|=\dfrac{7}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}+1=\dfrac{10}{3}\left(tm\right)\\x=-\dfrac{7}{3}+1=-\dfrac{4}{3}\left(tm\right)\end{matrix}\right.\)

10 tháng 1 2018

mk cần gấp lắm các bạn ạk

10 tháng 1 2018

BÀI 1:

a)  \(ĐKXĐ:\)          \(x-3\)\(\ne\)\(0\)

                          \(\Leftrightarrow\)\(x\)\(\ne\)\(3\)

b)   \(A=\frac{x^3-3x^2+4x-1}{x-3}\)

\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)

\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)

\(=x^2+4+\frac{11}{x-3}\)

Để  \(A\)có giá trị nguyên thì  \(\frac{11}{x-3}\)có giá trị nguyên

hay  \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau

\(x-3\)    \(-11\)         \(-1\)             \(1\)           \(11\)

\(x\)             \(-8\)               \(2\)              \(4\)           \(14\)

Vậy....

a)

ĐKXĐ: \(x\notin\left\{0;3;-3\right\}\)

Ta có: \(A=\left(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\right):\left(\dfrac{x^2}{27-3x^2}+\dfrac{1}{x+3}\right)\)

\(=\left(\dfrac{1}{3}+\dfrac{3}{x\left(x-3\right)}\right):\left(\dfrac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right)\)

\(=\left(\dfrac{x\left(x-3\right)}{3x\left(x-3\right)}+\dfrac{9}{3x\left(x-3\right)}\right):\left(\dfrac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\dfrac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{x^2-3x+9}{3x\left(x-3\right)}:\dfrac{-x^2+3x-9}{3\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{3x\left(x-3\right)}\cdot\dfrac{3\left(x-3\right)\left(x+3\right)}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-x-3}{x}\)

b) Để A nguyên thì \(-x-3⋮x\)

mà \(-x⋮x\)

nên \(-3⋮x\)

\(\Leftrightarrow x\inƯ\left(-3\right)\)

\(\Leftrightarrow x\in\left\{1;-1;3;-3\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{1;-1\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{1;-1\right\}\)