K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

`A=3/4+8/9+.............+9999/10000`

`=1-1/4+1-1/9+,,,,,,,,,,+1-1/10000`

`=99-(1/4+1/9+.........+1/10000)<99-0=99`

`=>A<99`

5 tháng 6 2021

Thanks

6 tháng 2 2019

A=3/4+8/9+15/16+...+9999/1000.

= 1 - 1/4 + 1  - 1/9 + 1 - 1/6 ... + 1 - 1/1000

= ( 1 + 1 + 1 + ... + 1 ) + ( - 1/4 - 1/6 - 1/9 - 1/1000 )

= 99 + (- 1/4 - 1/9 - 1/6 - ... - 1/1000 )

Vì 99 + ( - 1/4 - 1/9 = 1/6 - ... - 1/1000 )

=> A > 98

Vậy A > 98

21 tháng 4 2021

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{100^2}\right)\)(99 cặp)

\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

          99 hạng tử 1                         99 hạng tử

\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)< 99 (1)

Lại có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Khi đó A = \(99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-1=98\)(2)

(Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)(cmt) 

Từ (1)(2) => 98 < A < 99 => A không là số tự nhiên

14 tháng 5 2015

nhận xét: với n là số tự nhiên, ta có (n-1)(n+1)=n(n+1)-(n+1)=n2+n-n-1=n2-1

do đó: 1.3=22-1

           2.4=32-1

            ........

           99.101=1002-1

=> \(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{100^2-1}{100^2}\)

            \(=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)

            \(=\left(\frac{2^2}{2^2}+\frac{3^2}{3^2}+...+\frac{100^2}{100^2}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

            \(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

            \(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Ta có:

 \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}

6 tháng 4 2017

chẳng hiểu gì cả

đúng ko vậy

30 tháng 4 2019

yttjjy

1 tháng 5 2017

Ta có :

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)

gọi B là biểu thức trong ngoặc

Lại có :

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)

\(\Rightarrow A>98\)\(\left(2\right)\)

từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)

vậy A không phải là số tự nhiên

4 tháng 5 2017

phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà

27 tháng 4 2017

Ta có: \(A=\left\{\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{9999}{10000}\right\}\Rightarrow99\)số

\(A=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+...+\left(1-\dfrac{1}{100000}\right)\)

\(A=\left\{1+1+1+...+1\right\}\Rightarrow99\)số \(-\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{100000}=99-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{10000}\right)\)

Ta có: \(4=2^2>1.2\Rightarrow\dfrac{1}{4}< \dfrac{1}{1.2}\Leftrightarrow\dfrac{1}{4}< \dfrac{1}{1}-\dfrac{1}{2}\)

Tương tự: \(\dfrac{1}{9}< \dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{16}< \dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{10000}< \dfrac{1}{99}-\dfrac{1}{100}\)

Cộng theo vế ta được: \(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{10000}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrow A=99-\left(\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{16}+...+\dfrac{1}{10000}\right)>99-1=98\)

Vậy \(A>98\)