Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) A = 3 + 32 + 33 + ... + 32017 + 32018 + 32019
A = ( 3 + 32 + 33 ) + ... + ( 32017 + 32018 + 32019 )
A = 3 . ( 1 + 3 + 32 ) + ... + 32017 . ( 1 + 3 + 32 )
A = 3 . 13 + ... + 32017 . 13
A = 13 . ( 3 + ... + 32017 ) \(⋮\)13
Do đó : A = 3 + 32 + 33 + ... + 32017 + 32018 + 32019 \(⋮\)13
b ) Ta có : A = 3 + 32 + 33 + ... + 32017 + 32018 + 32019
A = 3 . ( 1 + 3 + 32 + ... + 32016 + 32017 + 32018 ) \(⋮\)3 ( 1 )
Ta lại có : A = 3 + 32 + 33 + ... + 32018 + 32019
A = 3 + 32 . ( 1 + 32 + 33 + ... + 32017 ) chia cho 9, dư 3 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là bình phương của một số tự nhiên
a)A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2017+3^2018+3^2019)
A=(3+3^2+3^3)+3^3x(3+3^2+3^3)+...+3^2016x(3+3^2+3^3) suy ra A chia hết cho (3+3^2+3^3)
Mà (3+3^2+3^3)=39;39 chia hết cho 13 nên A chia hết cho 13
\(A=1+3+3^2+.....+3^{2018}\)
\(\Leftrightarrow3A=3+3^2+...........+3^{2018}+3^{2019}\)
\(\Leftrightarrow3A-A=\left(3+3^2+.........+3^{2019}\right)-\left(1+3+......+3^{2018}\right)\)
\(\Leftrightarrow2A=2^{2019}-1\)
Mà \(B=2^{2019}\)
\(\Leftrightarrow2A;B\) là 2 số tự nhiên liên tiếp
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)