Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=3+3^2+3^3+...+3^{2009}\)
\(3A=3^2+3^3+3^4+...+3^{2010}\)
\(3A-A=2A=\left(3^2+3^3+3^4+...+3^{2010}\right)-\left(3+3^2+3^3+...+3^{2009}\right)\)
\(2A=3^{2010}-3\)
\(A=\frac{3^{2010}-3}{2}\)
Ta có:
2A + 3 = 32010 - 3 + 3 = 32010
=> n = 2010
Vậy n = 2010
ỦNG HỘ NHA
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc
\(A=3+3^2+3^3+...+3^{99}+3^{100}\)
\(3A=3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(3A-A=3^{101}-3\)
\(2A+3=3^{101}\)
Vậy n = 101
Ta có : A = 3 + 32+ 33 + .... + 3100 (1)
3.A=32 + 33 + 34 + .... +3 101 ( 2 )
Từ ( 1 ) và (2 ) ,ta có :
3.A-A= (32 + 33 + 34 + .... +3 101) - ( 3 + 32+ 33 + .... + 3100)
2.A = 3101 - 3
=> A= (3101-3 ) : 2 ( 3 )
Từ ( 3 ) ta có : 2. (3101- 3 ) : 2 + 3 = 3n
<=> 3101 = 3n
<=> 101 = n
Vậy n = 101
Ta có 3A= \(^{3^2+3^3+3^4+...+3^{100}}\)
3A-A=2A= (\(3^2+3^3+3^4+...+3^{100}\))-(\(3+3^2+3^3+...+3^{99}\))
2A= \(3^{100}-3\)
theo bài ra ta có
2A+3=\(3^n\)= \(3^{100}-3+3=3^n\)=\(^{3^{100}}\)\(\Rightarrow\)n=100
Ta có : A = 3 + 32 + 33 + ..... + 3100
=> 3A = 32 + 33 + 34 + ..... + 3101
=> 3A - A = 3101 - 3
=> 2A = 3101 - 3
=> 2A + 3 = 3101
=> x = 101
Vậy x = 101 .
\(A=3+3^2+3^3+........+3^{100}\)
\(3A=3^2+3^3+.......+3^{101}\)
\(3A-A=\left(3^2+3^3+........+3^{101}\right)-\left(3+3^2+3^3+........+3^{100}\right)\)
\(3A-A=3^2+3^3+........+3^{101}-3-3^2-3^3-........-3^{100}\)
=> \(2A=3^{101}-3\)
Sau đó làm tiếp
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = 3101 + 3100 - 3100 + 399 - 399 + ... + 34 - 34 + 33 - 33 + 32 - 32 - 3
(3 - 1)A = 3101 - 3
2A = 3101 - 3
\(\Rightarrow A=\frac{3^{101}-3}{2}\)
Ta có:
2A + 3 = 3n
2 . \(\frac{3^{101}-3}{2}\) + 3 = 3n
3101 - 3 + 3 = 3n
3101 = 3n
Vậy n = 101
a)A=3+3^2+3^3+....+3^1000
3A=3^2+3^3+3^4+....+3^1000
2A=3^1000-3
A=(3^1000-3):2
b)2.(3^1000-3):2+3=3^n
3^1000=3^n
Vậy n=1000
Chúc em học tốt^^
a) 3A = 32 + 33 + ... + 31001
2A = 3A - A = ( 32 + 33 + ... + 31001 ) - ( 3 + 32 + 33 +...+ 31000 ) = 31001 - 3
A = \(\frac{3\left(3^{1000}-1\right)}{2}\)
b) 2A + 3 = 31001 - 3 + 3
= 31001 = 3n
n = 1001
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=\)\(3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-...-3^{100}\)
\(\Rightarrow2A=3^{101}-3\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow3^{101}-3+3=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow n=101\)
n = 101