\(\in\)N biết rằng 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3A-A=\)\(3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-...-3^{100}\)

\(\Rightarrow2A=3^{101}-3\)

Ta có: \(2A+3=3^n\)

\(\Rightarrow3^{101}-3+3=3^n\)

\(\Rightarrow3^{101}=3^n\)

\(\Rightarrow n=101\)

7 tháng 8 2017

n = 101

19 tháng 8 2016

Ta có:

\(A=3+3^2+3^3+...+3^{2009}\)

\(3A=3^2+3^3+3^4+...+3^{2010}\)

\(3A-A=2A=\left(3^2+3^3+3^4+...+3^{2010}\right)-\left(3+3^2+3^3+...+3^{2009}\right)\)

\(2A=3^{2010}-3\)

  \(A=\frac{3^{2010}-3}{2}\)

Ta có:

2A + 3 = 32010 - 3 + 3 = 32010 

=> n = 2010

Vậy n = 2010

ỦNG HỘ NHA

19 tháng 8 2016

Bạn nào có cách làm mình mới tích.

4,Tìm a, b N, biết:

a,10a+168=b2

b,100a+63=b2

c,2a+124=5b

d,2a+80=3b

 Giải:

a) xét \(a=0\)

\(\Rightarrow10^a+168=1+168=169=13^2\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)

xét \(a\ne0\)

=>10a có tận cùng bằng 0

Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9  )

=>không có b

vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)

b)Chứng minh tương tự câu a)

c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5

\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5

Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0

ta có :

2^0 + 124 = 5^b

=> 125 = 5^b

=> 5^3 = 5^b

=> b = 3

Vậy a = 0 ; b =3

d)Chứng minh tương tự như 2 câu mẫu trên

3,Cho B=34n+3+2013

Chứng minh rằng B10 với mọi nN

Giải:

Ta có : 

34n+3+2013

=(34)n+27+2013

=81n+2040

Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc

8 tháng 10 2018

\(A=3+3^2+3^3+...+3^{99}+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{100}+3^{101}\)

\(3A-A=3^{101}-3\)

\(2A+3=3^{101}\)

Vậy n = 101

17 tháng 3 2020

Ta có : A = 3 + 32+ 3+ .... + 3100   (1) 

          3.A=32 + 33 + 34 + .... +3 101 ( 2 )

Từ ( 1 ) và (2 ) ,ta có :

3.A-A= (32 + 33 + 34 + .... +3 101) - ( 3 + 32+ 3+ .... + 3100

2.A = 3101 - 3

=> A= (3101-3 ) : 2   ( 3 )

Từ ( 3 ) ta có : 2. (3101- 3 ) : 2 + 3 = 3n 

               <=> 3101                         = 3n

               <=> 101                          = n

Vậy n = 101

        

14 tháng 4 2017

Ta có 3A= \(^{3^2+3^3+3^4+...+3^{100}}\)

3A-A=2A= (\(3^2+3^3+3^4+...+3^{100}\))-(\(3+3^2+3^3+...+3^{99}\))

2A= \(3^{100}-3\)

theo bài ra ta có

2A+3=\(3^n\)\(3^{100}-3+3=3^n\)=\(^{3^{100}}\)\(\Rightarrow\)n=100

21 tháng 9 2017

Ta có : A = 3 + 32 + 33 + ..... + 3100 

=> 3A = 32 + 33 + 34 + ..... + 3101 

=> 3A - A = 3101 - 3 

=> 2A = 3101 - 3 

=> 2A + 3 = 3101

=> x = 101

Vậy x = 101 . 

21 tháng 9 2017

\(A=3+3^2+3^3+........+3^{100}\)

\(3A=3^2+3^3+.......+3^{101}\)

\(3A-A=\left(3^2+3^3+........+3^{101}\right)-\left(3+3^2+3^3+........+3^{100}\right)\)

\(3A-A=3^2+3^3+........+3^{101}-3-3^2-3^3-........-3^{100}\)

=> \(2A=3^{101}-3\)

Sau đó làm tiếp

24 tháng 9 2015

A = 3 + 32 + 33 + ... + 3100

3A = 32 + 33 + 34 + ... + 3101

3A - A = 3101 + 3100 - 3100 + 399 - 399 + ... + 34 - 34 + 33 - 33 + 32 - 32 - 3

(3 - 1)A = 3101 - 3

2A = 3101 - 3

\(\Rightarrow A=\frac{3^{101}-3}{2}\)

Ta có:

2A + 3 = 3n

2 . \(\frac{3^{101}-3}{2}\) + 3 = 3n

3101 - 3 + 3        = 3n

3101                   = 3n

Vậy n = 101

1 tháng 7 2016

a)A=3+3^2+3^3+....+3^1000

3A=3^2+3^3+3^4+....+3^1000

2A=3^1000-3

A=(3^1000-3):2

b)2.(3^1000-3):2+3=3^n

3^1000=3^n

Vậy n=1000

Chúc em học tốt^^

1 tháng 7 2016

a) 3A = 32 + 33 + ... + 31001

2A = 3A - A = ( 32 + 33 + ... + 31001 ) - ( 3 + 32 + 33 +...+ 31000 ) = 31001 - 3 

A = \(\frac{3\left(3^{1000}-1\right)}{2}\)

b) 2A + 3 = 31001 - 3 + 3

= 31001 = 3n

n = 1001