K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

=(2014/2014)+(2015+2015)+(2016/2016)+(2017+2017)

=1+1+1+1

=4

vậy A=4 (4=4)

30 tháng 6 2017

Ta có : 

\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\) 

30 tháng 6 2017

\(T=1+\frac{3}{1.2^2}+\frac{4}{2.2^2}+\frac{5}{2^2.2^2}+...+\frac{2016}{2^{2013}.2^2}+\frac{2017}{2^{1014}.2^2}\)

\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{4}+\frac{6}{8}+...+\frac{2016}{x}+\frac{2017}{x}\right)\)

\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{2^2}+\frac{6}{2^3}+...+\frac{2016}{2^{2013}}+\frac{2017}{2^{2014}}\right)\)

Đến chỗ này chịu!

19 tháng 10 2018

\(A=2^{2019}-\left(2^{2018}+2^{2017}+2^{2016}+.....+2^1+2^0\right)\)

Đặt: \(B=2^{2018}+2^{2017}+2^{2016}+....+2^1+2^0\)

\(\Rightarrow2B=\left(2^{2018}+2^{2017}+2^{2016}+...+2^1+2^0\right)\)

\(\Rightarrow2B-B=\left(2^{2019}+2^{2018}+2^{2017}+...+2^2+2\right)-\left(2^{2018}+2^{2017}+2^{2016}+...+2^1+2^0\right)\)

\(\Rightarrow B=2^{2019}-1\)

\(\Rightarrow A=2^{2019}-\left(2^{2018}+2^{2017}+2^{2016}+.....+2^1+2^0\right)\)

\(=2^{2019}-\left(2^{2019}-1\right)=2^{2019}+2^{2019}+1>1\)

19 tháng 10 2018

đoạn cuối cùng bạn làm sai rồi

27 tháng 3 2020

351>350=925>825=275>270

27 tháng 3 2020

Vì 2017<2018 nên\(\frac{1}{2017}\)>\(\frac{1}{2018}\)

\(\frac{2}{2017}\)>\(\frac{1}{2018}\)

\(\frac{2015}{2017}\)=1-\(\frac{2}{2017}\)<1-\(\frac{1}{2018}\)=\(\frac{2017}{2018}\)

Vậy, \(\frac{2015}{2017}\)< \(\frac{2017}{2018}\)